Performance of the Yb/n-CdSe/C Tunneling Barriers

Authors: 
Qasrawi A F
ISSN: 
1555-130X
Journal Name: 
Journal of Nanoelectronics and Optoelectronics
Volume: 
13
Issue: 
10
Pages From: 
1493
To: 
1498
Date: 
Monday, October 1, 2018
Abstract: 
In this article, the design and performance of the CdSe which are deposited onto thin films of Yb metal is reported and discussed. The thin films of CdSe which are deposited by the physical vapor deposition technique are observed to exhibit slightly deformed hexagonal polycrystalline nature with excess amount of Cd as confirmed by the X-ray, energy dispersive X-ray spectroscopy and scanning electron microscopy techniques. The n-type CdSe is also found to form a Schottky barrier of tunneling type when sandwiched between Yb and carbon. The quantum mechanical tunneling mechanism in this device which was tested and modeled in the frequency domain of 10–150 MHz is found to exhibit average intersite separations of ∼5 nm. The tunneling device exhibited a widening in the depletion region associated with significantly large capacitance tunability in the studied frequency domain. On the other hand, as an optoelectronic device, the Yb/n-CdSe/C Schottky diode exhibited a responsivity of ∼0.10 A/W, photosensitivity of 6.5 × 104 and external quantum efficiency of 54% when biased with 1.0 V and exposed to laser light of wavelength of 406 nm.