
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

DOI : 10.5121/ijcnc.2016.8213 145

PERFORMANCE ANALYSIS OF MULTI-PATH TCP

NETWORK

Hamzah M A Hijawi and Mohammad M. N. Hamarsheh

Department of Computer Science, Arab American University, Jenin, Palestine

ABSTRACT

MPTCP is proposed by IETF working group, it allows a single TCP stream to be split across multiple

paths. It has obvious benefits in performance and reliability. MPTCP has implemented in Linux-based

distributions that can be compiled and installed to be used for both real and experimental scenarios. In this

article, we provide performance analyses for MPTCP with a laptop connected to WiFi access point and 3G

cellular network at the same time. We prove experimentally that MPTCP outperforms regular TCP for

WiFi or 3G interfaces. We also compare four types of congestion control algorithms for MPTCP that are

also implemented in the Linux Kernel. Results show that Alias Linked Increase Congestion Control

algorithm outperforms the others in the normal traffic load while Balanced Linked Adaptation algorithm

outperforms the rest when the paths are shared with heavy traffic, which is not supported by MPTCP.

KEYWORDS

TCP, MPTCP, Multi-homed, Congestion Controls

1. INTRODUCTION

Transmission control protocol TCP is widely used on the internet today. Most applications use

TCP as a reliable transfer protocol to transmit data across the internet. TCP has been evolving

since the first design from the 1970s. One of the early design decisions in TCP still frustrating

users; the separation between transport and network layers is not completely transparent.

However, in order to differentiate between individual data streams among incoming traffic, the

receiver demultiplexes packets based on the five tuples; source IP, destination IP, source port,

destination port and the protocol identifier, this is also called socket. Thus, any TCP connection is

a single path and bounded to a unique socket between the source and destination [1]. This means

that after the connection is established if for some reason the IP address is changed in the source

or destination then the whole connection will fail.

Today networks are becoming multipath, most of the servers are multi-homed, mobile devices

have multiple wireless interfaces like WiFi and GSM, and data centers have many redundant

links. This type of redundancy evolves the need for a new TCP design to make it operational over

multipath, this is called multipath TCP [2]. MPTCP is a major modification to TCP, which allows

multiple paths to be used simultaneously by a single TCP transport connection. It was first

proposed by IETF [3]. MPTCP has obvious benefits for reliability in case of link failures and for

load balancing in case of multi-homed servers and data centers. MPTCP also can achieve better

performance and it is more robust than a single path TCP while maintaining compatibility with

existing applications. This is achieved by providing a regular TCP interface to applications and let

the transport layer handles the multipath connections. MPTCP is presented as a sublayer under

TCP layer, it spreads data over multi-paths which are called sub-flows [3].

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

146

The design of MPTCP has been influenced by many requirements. Mainly, application and

network compatibilities [2]. Application compatibility means that applications that currently run

over TCP should work over MPTCP without any change. Network compatibility means that

MPTCP should work with any network on which TCP operates.

MPTCP connection is established by using three-way handshake with TCP options.

MP_CAPABLE option in the SYN packet indicates that the source can perform multipath TCP. If

the destination also supports multipath TCP, then it replies with SYNACK packet, which also

contains MP_CAPABLE option, after that source replies with ACK packet which again contains

MP_CAPABLE option to confirm that the connection will use MPTCP. Other options like using

a random key in the three-way handshake can be used for security purposes. Once the connection

established any of participants can create additional sub-flow if it finds a new path to the

destination by sending a new SYN packet with MP_JOIN option and information on which

MPTCP session to join. Once the connection has more than one sub-flow, it is up to the system

on each end to decide how to split the traffic between sub-flows. Each sub-flow looks like a

normal TCP connection; it has its own sequence numbers and congestion control which are

different from other sub-flows. New sub-flow can come up if a new path is available and can

vanish if one of the paths becomes unavailable [4].

One of the most important components of TCP is its congestion control mechanism, which allows

it to adjust throughput according to the network congestions. Each TCP connection maintains a

variable called congestion window. It governs the amount of traffic that the sender can send

without waiting for an acknowledgment from the receiver. The same approach is applied in

MPTCP in which each sub-flow has its own congestion window and it is updated dynamically

according to the congestion in the path it takes to reach the destination. Few congestion control

algorithms for MPTCP has been developed like coupled congestion control [5], opportunistic

linked-increases congestion control [6, 7], balanced linked adaptation congestion control [8] and

delay based congestion control [9].

The main goal of this paper is to evaluate the new emerging MPTCP protocol over single and

multiple interfaces. The throughput of different scenarios is measured using the Linux operating

system. Outputs from all scenarios are compared with each other and the performance of different

MPTCP congestion control algorithms is compared.

2. RELATED WORK

MPTCP is a new approach towards efficient load balancing, it does balance at the end nodes as

part of TCP process. MPTCP was described in RFC 6897 [4], an active working group in the

IETF. Many attempts have been made in order to implement MPTCP in the Linux Kernel. An

effort was made in [10]where the Kernel can be tuned and customized by system call variables.

With the possibility of using multiple paths for TCP, concerns have arisen about congestion

controls on these paths. An effort was made to implement effective and robust congestion control

mechanisms that effectively use the paths without harming the original TCP path. In [11], it was

shown that implementing some congestion control algorithms for multipath TCP could be

harmful. Equally-Weighted TCP EWTCP is an example of these harmful algorithms [12]. It is a

weighted version of multipath TCP which distributes the data fairly compared to the regular

MPTCP. It is not very efficient because it doesn’t split traffic evenly across the available paths.

COUPLED congestion control algorithm makes better decisions than EWTCP and solved some

fairness problems [5]. The weakness of this algorithm is obvious when the available paths have

different throughputs like the case in WiFi and GSM. It makes unequal round trip times (RTTs)

because the COUPLED algorithm tends to send all its traffic on the less congested path, which

makes the use of low throughput path inefficient. The proposed solution to these problems is

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

147

given in [12]. It is called SEMI-COUPLED congestion control algorithm. It is implemented based

on some design goals like good path selection, balanced congestion, and compatibility with

existing regular TCP.

A practical multipath congestion control algorithm is proposed in [13]. It focuses on improving

throughput and balance the congestion. It also compares the proposed algorithm with other three

congestion control algorithms: Fully coupled, linked increases and uncoupled TCP. The

simulation was carried out using CWNDSim. It was shown that the proposed algorithm

succeeded in keeping total throughput close to the target rate, and the traffic is pushed into the

less congested path. An overview of fully functional MPTCP is provided in [2]. The results

performed on the Linux machines that implemented MPTCP protocol in their Kernels. They

studied the most used cases for MPTCP which are the mobile devices and data canters. The data

transfer measurements of the mobile focus on the typical mode of operation in which the mobile

device is connected to WiFi, then connection goes down and the device switched to 3G. The

results were compared with the single path TCP and showed a smooth handover in the case of

MPTCP, this is because data keeps flowing despite the interface changed. The other scenario is

load balancing in the datacenter; the comparison was made with standard TCP, two flows

MPTCP, and four flows MPTCP when tested on EC2 test bed with 40 instances. They showed

that MPTCP with four paths outperforms both standard TCP and two paths MPTCP.

3. MPTCP CONGESTION CONTROL

MPTCP distributes loads through the creation of multiple sub-flows across potential paths

between source and destination. Congestion control in MPTCP is different from regular TCP. The

simplest way is to run the standard TCP congestion control on each sub-flow. However, this

solution is not efficient as it will give the multi-path flow more than its fair share if more than one

sub-flow across the same bottleneck link which is also shared with standard TCP

flow.Furthermore, it is desirable that the source with multiple paths will transfer more traffic

using the least congested path, achieving the resource pooling where a group of links behaves like

one shared link with bigger capacity [5].

Any multipath congestion control algorithm must meet a set of requirements which are

summarized in three different goals. The first goal is improving the throughput; a multipath

connection should perform at least as well as single path TCP would on the best of available

paths, this means that in the worst case the MPTCP would have throughput same as standard

TCP. The second goal does not harm;a multipath sub-flow should not take capacity more than

single path TCP would on the same link, this ensure that multipath sub-flow will not harm other

flows. The third goal is balancing the congestion; the multipath flow should move as much as

traffic to the least congested paths [3, 5, 11]. The first and second goals together ensure the

fairness at bottlenecks while the third goal achieves the concept of the resource pooling.

However, if each multipath flow sends more traffic through its least congested path, the network

traffic will move away from congested paths resulting in improvements in robustness and overall

network throughput.

Many congestion control algorithms were proposed, most of them were implemented in Linux

Kernels. The following four congestion control algorithms were implemented in most of Linux

distributions [10].

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

148

3.1 Alias Linked Increase Congestion Control

Alias Linked Increase Algorithm LIA couples the congested control algorithms that are running

on different sub-flows by linking their increase functions and dynamically adapts the congestion

window [5],the algorithm is only applied to the increase part of the congestion avoidance phase.

The resultis an algorithm that is fair to standard TCP at bottlenecks and at the same time moving

the traffic away from congested paths.

The additive increase and subtractive decrease behaviors can be described asfollows:

• For each ACK received on sub-flow i, the congestion window cwndi is increased by:

��� ��.��	
	.��� ���������
	 , �����	.���� !"#� $� (1)

Where:

 α: A parameter that describes the aggressiveness of the multipath flow.

Back: Number of acknowledged bytes.

Mssi: Maximum segment size on sub-flow i.

n:Total number of sub-flows.

• For each loss on sub-flow i, decrease cwndi by cwndi/2.

Formula (1) describes the increase behavior of the algorithm in Bytes, thefirst argument computes

the window increase value for the multipath sub-flow and the second one computes the

increasevalue for TCP in the same scenario. Taking the minimum of these values ensures that any

multipath sub-flow will not take capacity more than single path TCP, hence achieving the second

design goal. Alpha is a parameter used to adjust the aggressiveness of the multipath flow, its

valueis chosen such that the total throughput of the multipath flow is equal to the throughput

which TCP would get on the best path and this meets the first design goal.

According to the first term in formula (1), the total throughput for a multipath flow depends on

alpha, maximum segment sizes, and round trip times of its paths. In order to meet the first design

goal, it is impossible to choose a single value of alpha that achieves the desired throughput at

each time. Hence, alpha is computed based on the observed behaviors of all paths as shown in

formula (2), alpha is derived by equalizing the rate of multipath flow with TCP flow running on

the same path.

&∑ ()�*+�+,- . 	�/01�2�3�455�6 7
89 �2�3�455�

�
���

:
6																																																																																																			(2)

	
Where:

�;< ������=>>�6 ?:Maximim value of any possible path.

@ �����=>>�
�
+,- : Summation of all possible values of all paths.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

149

3.2 Opportunistic Alias Linked Increase Congestion Control

Through analysis and measurements provided in [7], it was proven that current LIA

implementation forces a tradeoff between optimal resource pooling and the responsiveness, both

goals can’t be achieved at the same time, this leads to the fairness problem to TCP users.

However, upgrading part of users from standard TCP to MPTCP can reduce the throughput for

other users without any benefit to MPTCP users and can also violate the third design goal.

OLIA, the opportunistic linked increases algorithm wasintroduced as an alternative for

LIA,it a window based congestion control algorithm. It couples the increase of congestion

windows and uses the same behavior in regular TCP in case of loss. This algorithm is only

applied to the increase part of the congestion avoidance phase, slow start algorithm is the same as

the one used in regular TCP with a small modification in case of multiple paths are established [6,

7].The additive increase behavior can be described as follows:

• For each ACK received on path i, increase congestion window cwndiby:

 	ABC�4556
&D� �����	���� E.&�2�3F	455F	 ..6

+	 ������� (3)

Where:

cwndp:Window size of a path p with largest congestion window.

RTTp:Round trip time of a path p with largest congestion window. αi: Adjust parameter for a path i.

n: is the total number of sub-flows.

• For each loss on sub-flow i, decrease cwndi by cwndi/2.

The first term in formula (3) provides the optimal resource pooling, it is a TCPcompatible version

that compensates for different RTTs. The second term with alpha guarantees the responsiveness

and non-flappiness of the algorithm.

3.3 Balanced Linked Adaptation Congestion Control

Recent MPTCP congestion protocols like LIA and OLIA suffer from either unfairness to the

single path TCP or unresponsiveness to network changes under certain conditions especially

when all paths used for MPTCP have the same round trip time. However, the trade-off between

these two issues is inevitable. Balances linked adaptation algorithm BALIA judiciously balances

this trade-off [8],it strikes a good balance between friendliness and responsiveness. The additive

increase and subtractive decrease behaviors of BALIA can be described as follows:

• For each ACK on path i, increase cwndi by:

H I�
=>>�	.J∑ 0�	���� K6L . DMN	/�O E . DPN	/�Q E (4)

Where:

<+ = ()�*+STT+

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

150

;+ = �;<{<V	}xY

n: is the total number of sub-flows.

• For each loss on path i, decrease cwndi by:

 D !"#�O E	 .���	{;+ , 1.5} (5)

If there is only a single path available then ;+ will be one and the increment and

decrement formulas will be reduced to those of TCP Reno algorithm.

3.4 Delay-Based Congestion Control

A Delay-based congestion control algorithm called wVegas is introduced in [9]. Unlike LIA

which is based on packet loss events, wVegas uses packet queuing delay as a congestion signal.

Compared with loss based congestion control algorithms described previously, wVegas is more

sensitive to the changes of network congestions, and can achieve more timely traffic shifting and

faster convergence. The following operations must be performed at the end of each transmission

round:

• For a sub-flowi, calculate the difference between the expected sending rate and actual sending

rate. 	*�\\+ = D !"#�]/�^_=>>� −	 !"#�=>>� E . a;bc_STT+ (6)

Where, RTTi is the average RTT on the last round on sub-flow i, and base_RTTi is the RTT of

a sub-flow i when the path is not congested.

If the sub-flow is in the slow start phase and the diffi is larger than a threshold called gamma,

the algorithm must enter the congestion avoidance phase.

• In the congestion avoidance phase, if the diffi is not less than unfairness	;i, then the rate must

be updated.

 d;ec+ = !"#�=>>� (7)

)c�fℎe+ = hijk�lml/n	o/l^	mp	/nn	+ (8)

;+ =)c�fℎe+ 	. eqe;r_; (9)

If diffiis larger than ;i, then ()�*+ =	cwndY	– 	1 else,()�*+ =	 cwndY + 	1

• The last task that wVegas tries to do is improving the accuracy of base_RTTi by making the

congestion window back off once detecting a queuing delay larger than some thresholds. By

this task, bottleneck link can drain off the backlogged packets. However, all flows involved

have a chance to obtain the most accurate propagation delay. wVegas first calculates the

queuing delay as follows:

 xycyc_*cr;z+ = STT+ − a;bc_STT+ (10)

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

If the current queuing delay is less than the saved

replaced by the current one. If the current queuing delay is twice

following operation:

 cwndY 	= &cwndY.. &0.5.	. &]/�^
4. EXPERIMENTAL RESULTS

Experimental evaluation of MPTCP is performed using Ubuntu Linux. The

with Ubuntu Kernel, which supports MPTCP [

using a laptop that had WiFi and 3G

figure 1. Ubuntu 14.04 is installed on

Kernel is replaced with multipath TCP v0.90 Kernel.Each of the network interfaces has a speed of

4Mbps.

4.1 Comparison between Regular TCP and MPTCP

In this experiment, we downloaded a 1GB file from a server through the internet in three different

scenarios. The first scenario by

using regular TCP over 3G interface, a

the same time. The comparison of

figure shows that using MPTCP over all available interfaces can enhance the throughput

expected. It also shows that the

throughput.Sometimes the throughput

using a link with shared capacity to the

called ifstat [14], the summation of

drawn as an average value for each ten readings;

clear that that the 3G link stability is not as good as the W

performance of the MPTCP link.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

If the current queuing delay is less than the saved queue_delayi then the queue_delay

replaced by the current one. If the current queuing delay is twice queue_delayi then pe

]/�^_=>>�=>> .

ESULTS

Experimental evaluation of MPTCP is performed using Ubuntu Linux. The Kernel is replaced

with Ubuntu Kernel, which supports MPTCP [10]. Multiple experimental scenarios are done

using a laptop that had WiFi and 3G interfaces. The topology of the system used is described in

Ubuntu 14.04 is installed on a laptop which represents the FTP client, and the Linux

Kernel is replaced with multipath TCP v0.90 Kernel.Each of the network interfaces has a speed of

Figure 1: System Topology

4.1 Comparison between Regular TCP and MPTCP

In this experiment, we downloaded a 1GB file from a server through the internet in three different

 using regular TCP over WiFi interface, thesecond

g regular TCP over 3G interface, and the last scenario by using MPTCP over WiFi and 3G at

ison of the throughput for the three scenarios is shown in Figure 2

that using MPTCP over all available interfaces can enhance the throughput

the throughput using MPTCP is almost the sum of each path

throughput.Sometimes the throughput is less than the sum because the experiments are

shared capacity to the internet. Throughput is monitored using a Linux tool

the summation of download speed for each network interface is collected

for each ten readings; this is to make the graph smoother.

ility is not as good as the WiFi link and this is reflected on the

. This explains the odd behaviour at 150, 300 and 550 s.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

151

queue_delayi must be

then perform the

 (11)

Kernel is replaced

]. Multiple experimental scenarios are done

. The topology of the system used is described in

represents the FTP client, and the Linux

Kernel is replaced with multipath TCP v0.90 Kernel.Each of the network interfaces has a speed of

In this experiment, we downloaded a 1GB file from a server through the internet in three different

second scenario by

sing MPTCP over WiFi and 3G at

is shown in Figure 2. The

that using MPTCP over all available interfaces can enhance the throughput as

ughput using MPTCP is almost the sum of each path

experiments are done

Throughput is monitored using a Linux tool

is collected and

is to make the graph smoother. It is also

flected on the

This explains the odd behaviour at 150, 300 and 550 s.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

152

Figure 2: Throughput using MPTCP at normal traffic

4.2 Heavy Load Comparison

In this experiment, we use the FTP to download 1GB file using MPTCP over WiFi and 3G

interfaces. While the file is downloading, YouTube video fileat time 300 seconds is started and

consumes most of the bandwidth. The same scenario was repeated with standard TCP. Figure 3

shows the throughput for both cases. The figure shows that the file gets better throughput in case

of MPTCP as expected. YouTube server does not support MPTCP and the video download was

using WiFi interface only. Thus, the total capacity of the3G interface is used for the FTP

download and the WiFi is shared between FTP and video download. Before time 150seconds, the

through put of the MPTCP is not steady because of the shared link capacity.When YouTube

video started at about 280seconds, the throughput dropped to 60 KB/s for standard TCP and to

170 KB/sfor MPTCP, this shows how using multi-paths can enhance MPTCP applications

throughput without affecting the behavior of standard TCPat congestion bottlenecks.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

153

Figure 3: Throughput using MPTCP at heavy traffic

4.3 MPTCP sub-flows over Single Interface

In this experiment, the download throughput is monitored using MPTCP with one sub-flow over a

WiFi interface. It is compared withdownload throughput of two sub-flows over the same

interface. Results show a good enhancement on throughput as the number of sub-flows increase

over the same path. Figure 4 shows that the download speed in case of MPTCP with two sub-

flows is increased by 70 KB/s when it is compared with MPTCP with 1 sub-flow.

Figure 4: MPTCP sub-flows

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

154

4.4 Application Layer Handover

The throughput of TCP with application layer handover is monitored and compared with that of

MPTCP. The throughput of TCP protocol is monitored while downloading a 1GB file from the

server using a TCP connection on WiFi interface. The WiFi access point is switched off during

the download. The application detected that WiFi interface went down and reconnected with a

new TCP connection (switched) to the 3G interface. The same scenario is implemented again

with MPTCP enabled. Figure 5 shows the results from both cases, the handover occurs between

100 – 130 seconds with MPTCP and data keeps flowing despite the lossof one of the interfaces. It

is shown that at the handover time, the download speed does not go to zero in thecase of

MPTCP.In thecase of TCP, the throughput goes to zero for all of the handover periodsuntil anew

connection is established.

Figure 5: MPTCP handover

4.5 Congestion Controls Algorithms Comparison

In this experiment, a comparison of the throughput when downloading a 1 GB file is made

between the four different congestion control algorithms discussed in section three. The file is

downloaded 4 times, each time different congestion control algorithm is used. These are LIA,

OLIA, BALIA and wVegas. WiFi and 3G interfaces are both utilized for MPTCP at normal

traffic load. Experiment results show that LIA has thebest throughput most of the time (150s –

480s) as shown in figure 6. BALIA also has a good throughput for the time from 0s to 320s at this

type of load. OLIA and wVegas did not show good throughput at this load and were not stable

most of the time.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

155

Figure 6: Throughput comparison between MPTCP congestion controls algorithms

4.6 Congestion Controls Algorithms Comparisonunder Heavy Traffic

The congestion control algorithms are designed to improve the throughput at heavy load. The

throughput is monitored at heavy load while downloading the 1GB file four different times. Each

time one of the congestion control algorithm is used and a YouTube video file is started at time

300 seconds to consume most of the bandwidth.The throughput in each case is compared with all

other cases to show the behaviour of the four different congestion control algorithms under heavy

traffic scenario to test how each of them reacts under extreme cases.

Figure 7: Throughput comparison between MPTCP congestion controls algorithms under Heavy Traffic

Load

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

156

Figure 7 shows the comparison results, it clearly shows that BALIA outperforms other congestion

algorithms when the paths are shared with heavy trafficthat is not supported by MPTCP. This

explains the trade-off between friendliness and responsiveness in the old congestion control

implementations in LIA and OLIA. Wvegasoutperforms LIA and OLIA, this is because it uses

packet questing delay as a congestion signal instead of loss based, and this makes wVegas more

sensitive to the changes in the network congestions and can achieve more timely traffic shifting

and faster convergence.

6. CONCLUSIONS

MPTCP is one of the most significant changes to TCP in the past years, it allows TCP streams to

be split over multiple paths to improve the performance of TCP applications and increase

throughput and reliability. MPTCP is implemented in the Linux Kernel and can be compiled and

installed on most of Linux distributions. In this article, we did a performance analysis of

MPTCP.It is shown experimentally that using MPTCP outperforms normal TCP and has many

advantages in different scenarios. The throughput of different congestion MPTCP algorithms is

also compared.

REFERENCES

[1] Postel, Jon. "RFC793: Transmission Control Protocol. USC." Information Sciences Institute 27

(1981): 123-150.

[2] Bonaventure, Olivier, Mark Handley, and Costin Raiciu. "An overview of Multipath TCP.”; login: 37,

no. 5 (2012): 17-23.

[3] Ford, C. Raiciu, and M. Handley. "TCP Extensions for Multipath Operation with Multiple Addresses"

draft-ietf-mptcpmultiaddress (work in progress)." (2010).

[4] Scharf, Michael, and Alan Ford. Multipath TCP (MPTCP) application interface considerations. No.

RFC 6897. 2013.

[5] Raiciu, C., M. Handley, and D. Wischik. "RFC 6356, Coupled Congestion Control for Multipath

Transport Protocols." (2011).

[6] Khalili, Ramin, Nicolas Gast, and Miroslav Popovic. "Opportunistic Linked-Increases Congestion

Control Algorithm for MPTCP." (2013).

[7] Khalili, Ramin, Nicolas Gast, Miroslav Popovic, Utkarsh Upadhyay, and Jean-Yves Le Boudec.

"MPTCP is not pareto-optimal: performance issues and a possible solution." In Proceedings of the 8th

international conference on Emerging networking experiments and technologies, pp. 1-12. ACM,

2012.

[8] Walid, A., Q. Peng, J. Hwang, and S. Low. "Balanced Linked Adaptation Congestion Control

Algorithm for MPTCP." Working Draft, IETF Secretariat, Internet-Draft draft-walid-

mptcpcongestion-control-03, July (2015).

[9] Cao, Yu, Mingwei Xu, and Xiaoming Fu. "Delay-based congestion control for multipath TCP." In

Network Protocols (ICNP), 2012 20th IEEE International Conference on, pp. 1-10. IEEE, 2012.

[10] "MPTCP Linux Kernel Implementation." MultiPath TCP. Accessed March 01, 2016.

http://mptcp.info.ucl.ac.be/.

[11] Wischik, Damon, Costin Raiciu, Adam Greenhalgh, and Mark Handley. "Design, Implementation and

Evaluation of Congestion Control for Multipath TCP." In NSDI, vol. 11, pp. 8-8. 2011.

[12] Honda, Michio, Yoshifumi Nishida, Lars Eggert, Pasi Sarolahti, and Hideyuki Tokuda. "Multipath

congestion control for shared bottleneck." In Proc. PFLDNeT workshop, pp. 19-24. 2009.

[13] Raiciu, Costin, Damon Wischik, and Mark Handley. "Practical congestion control for multipath

transport protocols." University College London, London/United Kingdom, Tech. Rep (2009).

[14] "Ifstat(1) - Linux Man Page." Ifstat(1): Report InterFace STATistics. Accessed March 01, 2016.

http://linux.die.net/man/1/ifstat.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 2016

157

AUTHORS

Hamzah M A Hijawi received his BS in computer system engineering from Birzeit University, Ramallah,

Palestine, in 2011. He is currently working with Exalt technologies as a software engineer since 2010 for

Cisco Systems, Inc. as a software engineer for deep packet inspection project NBAR, and currently

pursuing his Master of Computer Science from Arab American University, Jenin, Palestine. His researches

interest include computer networking, information security, wireless sensor network and data Mining.

Mohammad M N Hamarsheh received his BS in electrical and computer engineering from An-najah

National University, Nablus, Palestine, in 1999, and his MS and PhD degrees in computer and

communication engineering and communications and network engineering, in 2002 and 2006, respectively

from University Putra Malaysia, Serdang, Malaysia. He worked as the head of the FBG fabrication unit

with Photronix, Cyberjaya, Malaysia. He was involved in optical CDMA and fiber Bragg grating research

and development. He worked as a lecturer with faculty of information science and technology, Multimedia

University, Malaysia, from 2005 to 2008. He is currently an assistant professor at Arab American

University, Jenin, Palestine. His research interests include computer networking and security, optical code

division multiple access systems, fiber Bragg gratings, dense wavelength division multiplexing, and

polarization effect on optical fiber communication.

