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Abstract 
 

Mobile computing environment is subject to the constraints of bounded network bandwidth, 

frequently encountered disconnections, insufficient battery power, and system asymmetry. To 

meet these constraints and to gain high scalability, data broadcasting has been proposed on 
data transmission techniques. However, updates made to the database in any broadcast cycle 

are deferred to the next cycle in order to appear to mobile clients with lower data currency. The 

main goal of this paper is to enhance the transaction performance processing and database 
currency. The main approach involves decomposing the main broadcast cycle into a number of 

sub-cycles, where data items are broadcasted as they were originally sequenced in the main 

cycle while appearing in the most current versions. A concurrency control method 

AOCCRBSC is proposed to cope well with the cycle decomposition. The proposed method 
exploits predeclaration and adapts the AOCCRB method by customizing prefetching, back-off, 

and partial backward and forward validation techniques. As a result, more than one of the 

conflicting transactions is allowed to commit at the server in the same broadcast cycle which 
empowers the processing of both update and read-only transactions and improves data 

currency. 
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1. Introduction 

Mobile computing has become remarkably used by a wide range of users; as a consequence 

of the vast improvement in computer hardware and wireless network technologies. This 
environment encourages many providers to offer services to an unbounded number of users 

who are equipped with portable computing devices running on battery power regardless of 

time and distance limitations. 

Existing mobile technologies suffer from bounded network bandwidth, frequently 
encountered disconnections, insufficient battery power, and system asymmetry constraints. To 
handle such limitations, wireless data broadcasting has been applied on data transmission 

techniques by many research efforts [1][2][3][4][5][6]. 

Generally, in mobile client-server architecture, servers respond to users’ requests while 
requests are being transmitted, mobile clients consume more of their power than that when 

they receive the response in addition to the consumption of the scarce uplink bandwidth. Since 
the number of requests from any given client is not bounded as of the case of the number of the 

requesting clients, the server may be heavily loaded resulting in an extremely increased 

response time. However, wireless data broadcasting models such as "Broadcast Disks Model", 
which was proposed by Acharya [1], which can overcome these problems. In this model, the 

server constantly broadcasts the entire database via one or more wireless communication 

channels. Data items of interest to any client are retrieved by that client when they come up on 
the channel. So, clients have to wait for the required items until they are in the channel. This 

system identifies the channel as a shared data repository (disk); where data items are accessed 

sequentially. As broadcasting any item can satisfy all the outstanding requests for that item 

simultaneously, whatever the number of the outstanding requests is, the access time of mobile 
clients is not affected. Wireless data broadcasting is impressively scalable; that’s why it is 

widely used to develop several mobile application systems, like: auctions, electronic bidding, 

stock trading, weather information and traffic information broadcasts [7]. 

Read-only transactions constitute the majority in these applications while update 

transactions are infrequent. For example, stock trading involves a small group of stock 
purchasing or bidding, which represents update transactions in the application. Besides, 

relatively many more brokers, who just monitor stock prices, issue read-only transactions. In a 

read-only condition, there is no concerns about the consistency among data items, while in the 
presence of update transactions, consistency is most likely to be violated [6][8][9][10]. 

Reasonably, concurrency control schemes are required for mobile transactions to preserve 
data currency and consistency. Nevertheless, a direct application of traditional concurrency 

control schemes to mobile transaction processing is not considered an option because they do 

not suit the limitations of this environment [8]. In conventional methods, the communications 
between mobile clients and the server comprise exchanging a large number of messages, 

which in return consume much battery power of mobile clients and the limited uplink 

bandwidth [11], [12][13]. 

Moreover, the unbounded number of transactions coming from an also unbounded number 

of clients can easily overload or interrupt servers. Consequently, traditional concurrency 
control schemes, based on locking and time stamping, are not suitable for mobile transaction 

processing [7]. 

This paper proposes a new data, which addresses a technique that enhances the concurrent 
usage of a wireless database transmission. The new technique decomposes the cycle into 
subsycles allowing more than one conflicting transaction to be committed in a single global 
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cycle, and that is because an aborted transaction of one subcyle is shifted to resume execution 

at the next subcycle. The rest of the paper is organized as follows. 

2. Related Work 

Most of research efforts in wireless broadcasting circumstances concurrency control revolved 
around mobile transactions with uniform data access patterns [15], [16], [6], [8], [17], [18], [9], 

[10]. For example, Lee [8] proposed a method, which is called "Forward and Backward 

Optimistic Concurrency Control" denoted by "FBOCC", based on the optimistic concurrency 
control method. 

Forward validation is assigned for update transactions, while partial backward validation is 
for read-only transactions in FBOCC [8]. Nevertheless, just like all other concurrency control 

methods for wireless broadcast environments; FBOCC concentrates on mobile transactions 

with uniform data access patterns. When mobile clients run update transactions with 
non-uniform data access patterns, all those methods show a poor performance because of the 

frequent aborts and restarts in the final validation phase, which is a result of the conflict caused 

by updating the same data items. Accordingly, this problem wastes both the uplink and the 
downlink bandwidth as well, which in turn wastefully consumes more of the battery power of 

mobile clients. Later mobile concurrency control methods did not exploit caches of mobile 

clients. Caches at mobile clients decrease their response time, because storing data items in the 

mobile cache enables them to be accessed locally when the relevant transactions are resumed.  

For the sake of making the system more responsive, many proposals were deployed. 
Examples of these proposals are investigated, Lee [17][18] proposed a predeclaration 

technique, such that the response time of restarting mobile transactions is decreased by 

prefetching the data items before that transaction starts. Prefetching can be performed either 

through declaring the read data set of a transaction when it starts, or searching the transaction 
for all the potentially required data items before it starts. Nevertheless, the first method is 

impractical, while the second used more resources are consumed since more items are read 

more than what is really needed [7].  

Multiversion data broadcast technique [19] maintains and broadcasts multiple   versions for 
each item instead of broadcasting the last committed version only. The main purpose is to 

enhance the commitment probability. A new version (holding the identifier of the desired 

cycle) is assigned to each data item at the beginning of each cycle. The clients are supposed to 

access the different data items of the same version. The multiversion broadcast method neither 
supports update transactions nor real time conditions. Likewise, the size of the broadcast cycle 

is the added item versions, which, in turn, increase the response time for mobile transactions. 

Adaptive optimistic concurrency control with random back-off (AOCCRB) method was 
proposed on the basis of the optimistic concurrency control scheme. Optimistic concurrency 

control methods allow transactions to run their operations and defer the validation phase 
assuming that conflicts hopefully will never occur [7]. The validation is carried out in two 

modes, forward validation and backward validation [12]. In backward validation, the 

transaction checks the data items stored in its local buffer for reading purposes, against the 
control information (CI) attached at the beginning of each broadcast cycle. If a conflict is 

found, the validating transaction aborts locally. Hence, the control information of a cycle holds 

all the data items that were updated at the server by committed transactions in the previous 
cycle [7]. Forward validation involves only update transactions, when the validating 

transaction submits the set of data items two steps are incorporated. In the first step, the server 
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carries out a backward validation against the transactions that were committed since the start 

of the current cycle and before the data set is submitted. If the validating transaction does not 
pass the first step, it aborts. In the second step, the validation is carried out against the 

currently running transactions. If conflictions are detected, they will be resolved by aborting 

the currently conflict running transactions. Reasonably, aborting running transactions is 

preferable because of the relatively high loss of sacrificing the validating transaction [7]. 

To improve the response time of mobile transactions, AOCCRB applies data prefetching 
technique based on the access invariance [20]. Access invariance denotes that a restarting 

transaction heads for requiring the same set of data items used in the previous failed execution. 

A mobile client maintains a list of the data items accessed when it is running a transaction, so 
when the transaction is aborted and restarted, the data list is prefetched into the clients' cache, 

enhancing the response time of mobile transactions by reducing the access time for the needed 

data items. As mobile update transactions have non-uniform data access patterns, they are 

potentially repeatedly aborted and restart because of the update conflicts on hot data items, 
wastefully consuming resources of mobile clients [7]. AOCCRB supports mobile and server 

update transactions, real-time environment, and implements serializability as a correctness 

criterion. However, only one transaction, among all the conflicting transactions, is allowed to 
commit in any cycle. Consequently, the waiting time for restarting update transactions could 

be significantly long due to the size of the cycle. Furthermore, the availability of the updated 

items in any cycle is delayed to the next cycle.  

STUBcast proposed by Huang in [21], introduced two novel correctness criteria, "single 
serializability" and "local serializability" denoted by "SS"and "LS", respectively. Single 
serializability asserts that "all update transactions and any single read-only transaction, are 

serializable". Whilst, local serializability requires "all the update transactions in the system 

and all read-only transactions at one client side to be serializable". SS and LS are weaker but 
easier to achieve than global serializability, and they do guarantee the consistency and 

correctness at the server database. In STUBcast broadcast operations are divided into "primary 

broadcast" and "update broadcast" denoted by "pcast" and "ucast", respectively. The pcast 

broadcasts all the data items with their versions prior to the beginning of dissemination, while 
ucast broadcasts the new versions of the updated data items by inserting them into the ongoing 

pcast whenever a transaction is newly committed. The protocol consists of three components, 

"Client Side Read only Serialization Protocol" denoted by "RSP", "Client Side Update 
Tracking and Verification Protocol" denoted by "UTVP", and "Server Side Verification 

Protocol" dented by "SVP". 

STUBcast supports only mobile client update transactions, and does not support real-time 
environment, it uses single and local serializability (which is weaker than serializability) as a 

correctness criterion. Furthermore, the access efficiency is affected by the extended length of 
the cycle, besides the high overhead from using timestamps and the complexity of 

computations. 

3. System Model 

This section presents the model of the proposed system, which includes the following items: 

system architecture, structure and formation of the broadcast, data scheduling, control 
information creation and placement, and data binding (i.e. when data items are extracted from 

the database). These are all customized to achieve the desired targets. Moreover, some new 

assumptions and modified constraints will be presented. 
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3.1 Subcycle Formation Procedure 

The ordinary broadcast cycle approach broadcasts a subset of the database (or the whole 

database) as a transmission cycle. The broadcast subset consists of a subset of a database that 

includes all the data items aimed for dissemination. Broadcast cycle items are disseminated 
through a broadcasting channel in the form of a sequential data stream. The proposed model 

creates the conventional broadcast cycle, in the form of a set of data items only, then it splits it 

into smaller intervals called "sub-cycles". Creating AOCCRBSC adaptive cycle is carried out 
as follows: 

1. All cycles are of the same fixed size (i.e. each cycle contains the same number of items), as 

in Fig. 1(a). 

 

   Ci    

d1 d2        dm 

Fig. 1(a). Original Broadcast Cycle 

 

   C
n

i    

d1 d2  dp dp+1       dm 

Sub-cycle SC
n

i,1 Sub-cycle SC
n

i,2.                   Sub-cycle SC
n

i,n. 

Fig. 1(b). Decomposed broadcast cycle 

 

2. Sub-cycles are generated by splitting the cycle into none overlapping equally sized 
partitions that contain all the data items included in the original cycle, as shown in Fig. 

1(b). Throughout this model the notation: C
n

i refers to the ith cycle that consists of 'n' 

sub-cycles. Let Dm= {d1, d2, …, dm}, be the set of data items included in C
n

i. As sub-
cycles are equally sized and none overlapping, 'n' is a divisor of 'm' and  SC

n
i,j is the jth 

sub-cycle in the ith cycle. So given that SC
n

i,j ={dp}, where: dp ϵ D, implies that ((j-

1)*(m/n)+1) < p <= (j*m/n) where 'p' is the sequence of the data item 'd' in the Dm ( the 

same as in the original cycle before decomposition), and j ϵ {1, 2, …, n}. The 
pseudocode for cycle decomposition is shown in Fig. 2.  

3. All cycles consist of the same number of sub-cycles. 

4. The data items are extracted from the database dynamically. In other words, when the 
server starts for the first time, the first generated broadcast cycle consists only the 

identifiers of the data items selected for dissemination, the cycle is partitioned into 

subcycles. When it is time to start extracting data items from the database, only the items 
of the first sub-cycle are extracted, other items are postponed until the time of their 

dedicated subcycle. The server repeats these steps for all of the subsequent cycles. 
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CycleDecompse(D, n) 

{ 

for j = 1 to n 

   for p = ((j - 1) * (m / n) + 1) to ((j * m / n)) 

DDj = DDj + dp; 

   endfor 

endfor 

} 

\\D: the set of data items to be used to generate the 

adaptive cycle 

\\m : the number of items included in D 

\\dp : the data item with sequence number 'p' in D 

\\n : the number of sub-cycles desired 

\\DDj : the jth division of D 

 

Fig. 2. Cycle Decomposition 

5. Indexing of the data items in a cycle is distributed over its sub-cycles so that each data 

item in the decomposed cycle will be in the same order it appeared in the original cycle. 

The index is attached at the beginning of each sub-cycle as shown in Fig. 3. The index of 
each sub-cycle contains: the id of the data item, paired with the time when it will appear, 

the id of all sub-cycles it will appear in, paired with the subcycle start. And finally, the id 

of the next cycle paired with its start time. Time is measured relative to the starting time 
of the sub-cycle where the index is attached, for example; suppose that the pairs: 

(Ci+1,100), (SC
n

i,j+1,21) and (dk,15)  be a subset of information in the index of the current 

sub-cycle "SC
n

i,j". Each pair is interpreted as follows: the first, indicates that the i
th
 cycle 

Ci will start after 100 time units from the time that SC
n

i,j has started. The second, tells 

that the sub-cycle number (j+1) in the ith cycle (hence, the current cycle) will appear 

after 21 time units also from the time that SC
n

i,j has started. And the last, shows that the 

k
th
 data item dk will appear after 15 time units also from the time that SC

n
i,j has started. 

 

                        C
n

i     

Index 

SCn
i,1 

d1  dp 
Index 

SCn
i,2 

dp+1   
  

 dm 
Index 

SCn
i+1,1 

Sub-cycle SC
n

i,1 Sub-cycle SC
n

i,2.  Sub-cycle SC
n

i,n.  

Fig. 3. Decomposed broadcast cycle Cn
i with index 

6. In the ordinary cycle, control data is cached at the beginning of each new cycle. Control 

information of a cycle includes all the data items that were updated at the server in the 
previous cycle. Control information is used to enable the running mobile transactions to 

detect the read/write conflicts with the committed transactions recorded on the server in 

the previous cycle, so they abort early saving valuable resources. Control information 

can be used to detect these conflicts coming from the previous sub-cycle, such that 
control information at the beginning of each sub-cycle includes all the data items that 

were updated at the server in the last sub-cycle, as shown in Fig. 4. Consequently, 

running mobile transactions have to suspend execution at the beginning of every new 
sub-cycle to catch the control information, for validation. 
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Fig. 4. Decomposed broadcast cycle Cn
i with index and Control Information (CI) 

As shown in Fig. 4, transactions do not have to wait until the length of the reminder of 

cycle to catch CI and execute the validation, instead it waits for the rest of current subcycle, 

giving a chance to more transactions to be committed, and conflicts may be detected earlier. 
Number of sub-cycles generated has a big impact on the performance, so it should be chosen 

carefully. Higher number of sub-cycles generated, the faster CIs appear. Consequently, 

running transactions must tune-in more often in a shorter time, since the tuning time may 
dramatically increase. For example, if more subcycles are used, the time spent in doze mode 

before tuning-in should be considered when determining the number of sub-cycles in order 

to not missing any control information (CI) by transactions. 

3.2 Adaptive Optimistic Concurrency Control at Sub-Cycle Level (AOCCRBSC) 

Broadcast cycle is a subset of a consistent state of the database, so only transactions that gain 

all its data items, and finish execution within the same cycle are allowed to commit, while 
the rest, are aborted and restarted later at the beginning of the next cycle. Consequently, 

transactions are forced to abort until insuring that data items collected in different broadcast 

cycles are members of a consistent state of the database. 

Backward validation technique solves the problem of uncertainty and discovers 

inconsistency by allowing running transactions to span multiple cycles detecting the 

inconsistency of the data items they read so far, by invalidating data items in its read set at 

the beginning of every broadcast cycle against all the data items updated by the transactions 
that were committed during the last cycle. 

Unfortunately, once a conflict is detected, not only the transaction has to restart, but also 

has to read the entire data items it already read, including none conflicting items. This 
situation needs more resources since the transaction is forced to read data items from air 

instead of reading it from its own cache. To solve this problem, a restarting transaction 

should re-read only the inconsistent data items from the broadcast cycle, and caching the 

consistent items. This is what prefetching stands for. 

Combining prefetching and backward validation will save mobile client's resources, since 

the number of successfully committed transactions is increased, and the number of data 

items read from the air is decreased. 

The server has to validate update transactions for commit, or to do what is called "Forward 

Validation". Forward validation completes the work done by the backward validation at the 

mobile client. In forward validation, the intending to validate transaction is checked out 

against all active transactions during the current sub-cycle. However, aborting the validating 
transaction is more expensive than aborting the currently running transactions, the resolution 

of any potential conflicts is carried out by aborting the currently conflict running 

transactions.  

Basically, random back-off decreases the number of restarting transactions at the 

beginning of a new cycle, by trying to decrease the number of aborts. Assume that there are 

k transactions conflicting because of data item 'x'. When any of them runs the forward 

validation, the rest k-1 transactions are aborted and restarted at the next cycle. Thus, the 
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opportunity for any of the transactions to commit is (1/k). This case is repeated for at least k-

1 cycles, because new competitors may appear in next cycles. The basic idea of the random 
back-off is that the server keeps track of the number of transactions that aborted because of 

their intentions to update a data item, which is called the contention degree of the data item 

'x'. Including this parameter in the control data, and transmit it to the mobile client enables it 

to postpone aborted transactions of low committing possibility (i.e. with the high contention 
degree) to the start of a later cycle.  

Consequently, combining all of these techniques (prefetching, backward validation, 

forward validation, and random back-off) will be more significant. However, when broadcast 
cycles are too long, some aborted transactions will suffer from long delay. If transactions have 

time-outs, as it is so often the case, some transaction will not survive. Dead transactions have 

to be re-submitted for execution, which makes the mobile clients to hold for longer time. 

Therefore, degrading the data currency because the server will spend more than one cycle to 
validate data items to consistently appear in the next cycle. 

Allowing a subset of data items to be updated at the server during the current cycle, data 

items will always appear in their most updated versions (i.e. increasing data currency), 
allowing more than one transaction to update the same data item during one cycle (i.e. 

increasing transaction concurrency), at the same time reducing resource consumption by 

decreasing number of data items read from air by restarted transactions, while applying the 
undisputed correctness criterion (i.e. the serializability), so that the consistency is still 

preserved at once. This can be assumed to be a sensational achievement, which is the 

contribution of this work. 

3.2.1 Partial Backward Validation at Sub-Cycle Level at Mobile Client 

This section presents an explanation of how transactions work at mobile client side in the 

proposed method; mobile transactions are processed throughout the following steps: 

1. The local cache of a mobile transaction is utilized so that any read operation checks for the 

existence of the desired data item before trying to fetch it from air. In addition, all write 
operations initially take place in the local cache until after the transactions finish execution, 

that they are submitted to the server for validation. Furthermore, a restarting transaction 

predeclares the data items to be read from air again, such that data items are ordered 
according to its sequence in the channel instead of the time they were required in the 

execution.  

2. Whenever a new sub-cycle begins, all transactions suspend execution and perform a partial 
backward validation using the broadcasted control information. The transactions which 

succeed the validation resume the execution, other failure transactions are aborted. The time, 
when an aborted mobile transaction restarts, depends on the type of the transaction (i.e. read-

only transactions immediately restarted, while update transactions wait for the back-off time 

before restarting. 

3. When a read-only transaction reaches its end of transaction point (EOT) before a new 
broadcast sub-cycle, it locally commits; otherwise, if it is an update transaction, it goes 

through the forward validation procedure at the server. 

Step1 extends the behavior of the existing optimistic concurrency control method by 
enhancing the utilization of the local cache of restarting transactions. In addition to 

prefetching, which already exists, a restarting transaction exploits cache for predeclaration 
by sorting the unprefetched data items by their index in order to catch each of them from its 

earliest occurrence. 
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In step 2, instead of waiting the next cycle, running mobile transactions (both read-only and 
update transactions) suspend execution to catch the CI, which contains only the items that 
were updated during the previous sub-cycle, to run a partial backward validation. 

In step 3, as read-only transaction locally commit, the updated data items will be available in 
the channel immediately at the first sub-cycle they are scheduled to before the beginning of 

the whole cycle. 

The Algorithm for Partial Backward Validation at Sub-Cycle Level 

Fig. 5 represents partial backward validation at sub-cycle level. When the j
th
 sub-cycle of 

the i
th
 cycle, which consists of n sub-cycles, denoted by "SC

n
i,j" starts, the mobile transaction 

'Tv' suspends running to go through the partial backward validation. The validating 

transaction detects the channel to catch the control information broadcasted at the beginning 

of the sub-cycle. Afterwards, it compares the set of data items in the captured control 

information against the cached items at Tv for reading purposes creating its "ReadSet(Tv)".  
//Tv: mobile transaction. 

//CI(SCi,j): the set of data items that was updated during the previous broadcast //sub-cycle 'SCx,y'. 

//ReadSet(Tv): the read data set of the transaction 'Tv' 

//PrefetchingSet(Tv): the set of data items to be prefetched by the transaction 'Tv', //i.e., to be read from the 

local cache. 

//UnPrefetchSet(Tv): the set of data items to be unprefetched by Tv, i.e., to be read //from the air again. 

PartialBackwardValidationSC(Tv, SCn
i,j) 

{ 

if(ReadSet(Tv) ≠ Ø) 
   forall 'x' ϵ CI(SCn

i,j) 

      forall 'y' ϵ ReadSet(Tv) 

          if (x.id == y.id) then 

             UnPrefetchSet(Tv) = UnPrefetchSet(Tv) +y; 

          endif 

      endfor 

   endfor 

endif 

if(j>1) then 

   C = SCn
i,j-1; 

else 

   C = SCn
i-1,n; 

endif 

if(UnPrefetchSet(Tv) ≠ Ø) then 

   PrefetchingSet(Tv) = PrefetchingSet(Tv) U (ReadSet(Tv) -   

   UnPrefetchSet(Tv)); 

   if (Tv is update transaction) then  

      BackoffAndRestartSC(Tv, C); 

   else 

      restart(Tv); 

   endif 

else 

   continue; 
   when Tv finishes, call LastPartialBackwardValidationSC(Tv, SCn

i,j); 

endif 

} 

Fig. 5. Partial Backward Validation at Sub-Cycle level 
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Unless there are no common items resulting from this comparison, Tv aborts locally due to 

confliction with a committed transaction in a previous sub-cycle, otherwise it resumes 
running.  

Before the transaction 'Tv' is aborted, it extracts the non-conflicting data items from the set 
of data items included in ReadSet(Tv), adding them to the prefetching set denoted by 

"PrefetchingSet(Tv)". Tv will reread the prefetched data items, when it restarts, locally from 

its cache. Furthermore, conflicting data items are also extracted, and included in another set 
denoted by "UnPrefetchSet(Tv)". Tv will reread the unprefetched data items from air again, 

sorting them according to the arrival time (index), and storing them in its local cache as soon 

as they show up in the air.  

If 'Tv' is an update transaction, the abortion will trigger algorithm2 which is used to 

determine the back-off time that Tv should spend waiting before restarting. Otherwise, if 'Tv' 
is a read-only transaction, it is just restarted normally.  

 
//Tv: mobile transaction. 

//CI(SCi,j): the set of data items that was updated during the previous broadcast sub-cycle 'SCx,y'. 

//ReadSet(Tv): the read data set of the transaction'Tv' 

//WriteSet(Tv): the current write data set of the transaction 'Tv' 

//PrefetchingSet(Tv): the set of data items to be prefetched by the transaction 'Tv', //i.e., to be read from 

the local cache. 

//UnPrefetchSet(Tv): the set of data items to be unprefetched by Tv, i.e., to be read // again from air. 

//ContentionDegree[x]: the contention degree of the data item 'x' 

BackoffAndRestartSC(Tv, SCn
i,j){  

abort(Tv); 

MaxContentionDegree = max(ContentionDegree[x]) where x ϵ ReadSet(Tv); 

if(MaxContentionDegree>1) then 

MaxContentionDegree = MaxContentionDegree – 2; 

endif 

Pick a random number between 0 and (MaxContentionDegree) as BackoffTime; 

k = 1; 

while(k <= BackoffTime) 

   wait in doze mode until the next sub-cycle starts; 

   forall 'x' ϵ CI(SCn
i,j) do 

      forall 'y' ϵ PrefetchingSet(Tv) do 
         if(x.id == y.id) then 

            UnPrefetchSet(Tv) = UnPrefetchSet(Tv) + y; 

         endif 

      endfor 

   endfor 

   PrefetchingSet(Tv) = PrefetchingSet(Tv) - UnPrefetchSet(Tv); 

   k = k + 1; 

end while 

sort(UnPrefetchSet(Tv)); // according to the index of the items contained 

restart(Tv); 

} 

Fig. 6. Back-off and Restart at Sub-Cycle level 

Back-Off and Restart at Sub-Cycle Level 

Fig. 6 shows the pseudo code for back-off and restart at sub-cycle level, where (SC
n

p,q) is the 

sub-cycle leading the current sub-cycle (SC
n

i,j), the transaction 'Tv' is first aborted. The 
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mobile client finds the data item having maximum contention value M in the ReadSet(Tv), 

which is broadcasted at the beginning of the sub-cycle. After that, the random number, 
denoted by "BackoffTime", is generated depending on the value of M. Finally, Tv waits in 

doze mode for BackoffTime cycles before restarting. 

Mobile clients, including those in back-off phase, get the control information at the 

beginning of each sub-cycle. If it finds out that one of the locally cached data items is updated 
in the previous sub-cycle, the items are excluded from PrefetchingSet(Tv) and included in 

UnPrefetchSet(Tv). If the transaction 'Tv' successfully goes through the partial backward 

validation, it resumes running. 

Last Partial Backward Validation at Sub-Cycle Level 

Fig. 7 shows the pseudo code of the last partial backward validation at sub-cycle level. When 
a transaction 'Tv' finishes execution before the beginning of a new sub-cycle, it is locally 

committed if it is a read only transaction, otherwise it waits for server validation. The client 

stores the current sub-cycle number, denoted by "SC
n
i,j", in its cache, and submits it to the 

server after the transaction Tv finishes execution, where is the server use it for the final 
validation. 

 
 //Tv: mobile transaction 

//CI(SCi,j): the set of data items that was updated during the previous broadcast sub-cycle 'SCx,y'. 

//ReadSet(Tv): the current read data set of the transaction 'Tv' 

//WriteSet(Tv): the current write data set of the transaction 'Tv' 

//PrefetchingSet(Tv): the set of data items to be prefetched by the transaction 'Tv' 
LastPartialBackwardValidationSC(Tv, SCn

i,j) 

{ 

PrefetchingSet(Tv) = PrefetchingSet(Tv) U ReadSet(Tv); 

if(Tv is read-only transaction) then 

   commit(Tv); 

   exit(); 

endif 

if(j>1) then 

   C = SCn
i,j-1; 

else 

   C = SCn
i-1,n; 

endif 

submit WriteSet(Tv) and C to server; 

if(Tv is validated) then 

   commit(Tv); 

   exit(); 

else 

   BackoffAndRestartSC(Tv, C); 

endif 

} 

Fig. 7. Last Partial Backward Validation at Sub-Cycle level 

3.2.2 Forward Validation at Sub-Cycle Level at the Server 

The server does forward validation by comparing the write data set of the validating 

transaction against the read data sets of all currently running transactions. Transactions 
running on the server having common items between their read data sets and the write data 
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set of the validating transaction, making it to abort. This is the way in which data conflicts 

are resolved. 

Passing forward validation by a mobile transaction is constrained to passing a preceding 

last backward validation. This is reasonably required because, during the current sub-cycle, 
specifically after the transaction has locally passed the partial backward validation and 

before the transaction went through final validation, some transactions may be committed at 

the server. Accordingly, the mobile client records the corresponding sub-cycle number 
during which the partial backward validation is passed, and it submits it and the desired write 

data set to the server for forward validation. 

 
//Tv: the validating mobile transaction 

//Ta: a set of the currently running server transactions 

//SCx,y: the broadcast sub-cycle number when 'Tv' passed the last partial backward //validation 

//Tc : a set of transactions which committed at the server during the broadcast //sub-cycle SCx,y 

//ReadSet(T): read data set of the transaction 'T' 
//WriteSet(T): write data set of the transaction 'T' 

//CI(SCx,y): the set of the data items that was updated during the previous //broadcast sub-cycle 'SCx,y' 

//ContentionDegree[x]: the contention degree of the data item 'x' 

ForwardValidationSC(Tv, SCn
i,j){ 

if(Tv is a mobile transaction) then 

   if(LastBackwardValidationSC(Tv) is false) then 

      abort(Tv); 

      forall 'x' ϵ WriteSet(Tv) do 

         ContetionDegree[x] = ContetionDegree[x] + 1; 

      endfor 

   endif 

endif 
forall T ϵ Ta do 

   if(Readset(T) ∩ WriteSet(Tv) ≠ Ø) then 

      abort(T); 

   endif 

endfor 

if(j<n) then 

   CI(SCn
i,j+1) = CI(SCn

i,j) U WriteSet(Tv); 

else 

   CI(SCn
i+1,1) = CI(SCn

i,j) U WriteSet(Tv); 

endfor 

commit(Tv);} 
LastBackwardValidationSC(Tv) 

{ 

forall T ϵ Tc do 

   if(WriteSet(T) ∩ ReadSet(Tv) ≠ Ø) then 

      return false; 

   endif 

endfor 

} 

Fig. 8. Forward Validation at Sub-Cycle level 

The Algorithm for Forward Validation at Sub-Cycle Level 

Fig. 8 shows the pseudo code for forward validation at sub-cycle level. Whenever a 

transaction is committed at the server, the database is updated using the write data set of that 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 4, April 2018                                   1667 

transaction. The write data sets of all committed transactions in a sub-cycle are maintained by 

the server to generate the control information that will be broadcasted at the beginning of the 
next broadcast sub-cycle. Control information is used by mobile clients to run the partial 

backward validation for their mobile transactions. If the validating transaction 'Tv' fails the at 

forward validation, the server exploits the write data set of 'Tv' to calculate the contention 

degree of each of these items. Finally, successfully committed update transaction is adding to 
the control information of the next sub-cycle, as a result that transaction commits before it 

terminates. 

Adjusting Contention Degree at Sub-Cycle Level 

Algorithm 6 shows the pseudo code for adjusting contention degree at sub-cycle level. At the 

beginning of each sub-cycle, the contention degrees of all data items are readjusted by using 
"Algorithm5". If there were no transactions competing to write on the item 'x', then the 

contention degree of 'x' is initialized as (0). If there were 'k' update transactions competing to 

write on 'x', the aborted transactions will pick a random number 'w' between (0) and (k-2) and 

have to wait until 'w' sub-cycles are elapsed before they are restarted. Due to this method, the 
'k' update transactions competing for the data item 'x' are expected to be uniformly 

distributed across the next 'k' broadcast cycles. Thus, the contention degree of the data item 

'x' in this case is readjusted to (1). 

 
//ContentionDegree[x]: the contention degree of the data item 'x' 

AdjustContentionDegreeSC() 

{ 

forall 'x' in DB do 

   if(ContentionDegree[x] > 1) then  ContentionDegree[x] = 1; 

   else   ContentionDegree[x] = 0; 

   endif 

endfor 

} 

Fig. 9. Adjusting Contention Degree at Sub-Cycle level 

4. Performance Analysis 

In this section, the performance of the proposed method AOCCRBSC is analyzed using the 
experimental results from the simulator, which is implemented regarding the adaptive model 

against AOCCRB [7]. Testing was carried out through out a repetitive comparison between 

the set of results coming from the simulator and a set of manually produced results applying 

the same conditions (i.e. parameter settings). In the next sections (5.1, 5.2), the simulator is 
described, the simulation results are analyzed and discussed, respectively.  

4.1 Simulator Specifications 

The simulation program is built to evaluate the performance of the proposed AOCCRBSC 

(Adaptive Optimistic Concurrency Control using Random Back-off at Sub-Cycle level) 

scheme against AOCCRB [7]. This simulator is an object-oriented program which is 
implemented using Java programming language running on a 1.00 GHz AMD E1-2100 APU 

processor PC equipped with 4 GB of RAM and using Windows 7 Ultimate SB1 platform. 

Mobile transactions in the simulator are allowed to keep running until they eventually 
commit, regardless of any time limitations. In other words, the simulated environment does 
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not support real-time conditions; so that a mobile transaction does not have to meet any 

additional deadline constraints to commit. The parameter settings of the simulator are shown 
in Table 1 down below.  

 

Table 1. Simulation Parameters 

Component Parameter Range 

Server 
Zipf parameter (θ) 0.0-1.0 

Data item size 8000 bits 

Mobile Transaction 

Transaction length (# of operations) 8 

Read operation probability 

(for update transactions) 
0.5 

Read-only to update transactions ratio 0.7 

Mean inter-operation delay 
65,536 bit-times (exponentially 

distributed) 

Mean inter-transaction delay 
131,072 bit-times 

(exponentially distributed) 

The number of mobile transactions 100-1000 

 

4.2 Simulation Results Analysis and Evaluation 

The metrics used to measure the performance of the proposed method are the response time, 

the average number of aborts, and the average number of commits. The performance 

difference between the proposed method and AOCCRB [7] is shown by varying these 

parameters’ values, and the number of sub-cycles. 

4.2.1 The Effect of Sub-cycles on Response Time 

The effect of varying the number of sub-cycles, is tested against using a single sub-cycle that 

indicates the absence of cycle decomposition, on the response time is discussed in this 

section. As shown in Fig. 10, the response time of the proposed AOCCRBSC method is 
slightly better than that of the AOCCRB [7] when the cycle is not decomposed, and the 

difference starts to expand as the number of sub-cycles gets larger. 

Reasonably, AOCCRBSC has a better response time over AOCCRB even when the cycle 
is not decomposed because of the usage of the predeclaration, where the cost (time and 

power) of reading from the cache is much smaller than reading from the channel, in the 
proposed technique. Moreover, the time spent (and power consumed) by a restarted 

transaction before abortion is much smaller, in case of using sub-cycles, for the AOCCRBSC 

method; which leads to a better response time. 

Furthermore, the overall response time is enhanced by using AOCCRBSC because of 
adapting back-off to distribute the aborted update transactions over the next sub-cycles 

instead of the longer cycles which decreases the time spent by the aborted transaction 

waiting to restart. 
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Fig. 10. Response time 

 

4.2.2 The Effect of Sub-Cycles On the Average Number of Aborts  

In this section, the average number of locally aborted transactions by the proposed 

AOCCRBSC method is compared to that of AOCCRB. Fig. 11 shows that the average 
number of local aborts by AOCCRBSC is larger than that of AOCCRB. This is because 

backward validation is more frequently carried out in AOCCRBSC as mobile clients 

performs the validation at the beginning of each sub-cycle; and in turn conflicts are also 
more frequently detected, and resolved by locally aborting conflicted transactions. 

Moreover, conflicts are detected and resolved by AOCCRBSC for mobile transaction at 
earlier stages of their execution, which not only increases number of locally aborted mobile 

transactions but also decreases the cost (in both time and power consumption) of transaction 

abortion. Obviously, aborting the mobile transaction at the server is much expensive than at 
mobile clients, the larger number of locally aborted transactions can lead to a better 

performance. However, read-only transactions are allowed to commit locally whenever they 

complete their execution before the end of the current sub-cycle, and update transactions 
may grant commit by the end of the current sub-cycle as well. 

 

 
Fig. 11. Average Number of Aborts 
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4.2.3 The Effect of Sub-Cycles On the Average Number of Commits 

In this section, the average number of committed transactions by the proposed AOCCRBSC 
method is compared to that when AOCCRB is applied, Fig. 12 shows that the number of 

committed transactions by AOCCRBSC is the same as for AOCCRB; when the cycle is not 

decomposed, and starts to get larger as the number of sub-cycles increases. 

Only one transaction among all the conflicting update transaction in the cycle, is allowed 
to commit for both methods when decomposition is not applied, However, AOCCRB does 
not benefit from cycle decomposition, while AOCCRBSC incrementally accepts transactions 

from each group of the conflicting update transactions at each number of sub-cycles. In other 

words, the number of committed update transactions by AOCCRBSC in any cycle is 
proportional to the number of sub-cycles constituting this cycle, while AOCCRB allows only 

one conflicted update transaction to commit in each cycle. 

Moreover, as the actual reason of conflicts is update transactions; as the rate of update 
transactions termination increased, the number of conflicts decreases accordingly. In fact, as 

the probability of (update) transaction to commit is increased, the competition to commit is 
reduced, which is the case of using AOCCRBSC. Furthermore, when the number of conflict 

originators decreases, the number of locally committed read-only transactions is increased as 

well. 

 

 
Fig. 12. Average Number of Commits 

5. Conclusion and Future Work 

Due to the analysis of simulation results in the previous section, AOCCRBSC method has 

shown a better performance than AOCCRB, and intern is considered as a powerful optimal 
concurrency control method that suits wireless broadcasting environments. 

The enhanced performance shown by AOCCRBSC is represented by gaining better 
response time, power conservation, and utilized usage of uplink bandwidth over AOCCRB 

for all predefined simulation setting. 

Finally, it is more effective to apply the proposed model, because the response time is still 
enhanced even in the absence of cycle decomposition because of the predeclaration 
exploiting, which uses the knowledge obtained from the transaction's failed to execute, 

allowing the mobile client to read the unprefetched data items from air in the sequence they 

appear in the cycle instead of that in the rerun transaction. 

In the future, the target is to extend the simulator for the testing of STUBcast to improve 

the performance analysis of the proposed method. Moreover, more evaluation metrics (such 
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as data currency, uplink and downlink usage …) are to be implemented by the simulator to 

precisely determine the performance of the proposed method compared to others. 
Furthermore, the simulation is developed to test more factors (transaction length, cycle size, 

etc.). Finally, an in depth research to find a mechanism that determines the optimal number 

of sub-cycles that gives the best performance of the proposed method may be performed. 
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