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Abstract: The hereditary spastic paraplegias (HSPs) are a large clinically heterogeneous group of
genetic disorders classified as ‘pure’ when the cardinal feature of progressive lower limb spasticity
and weakness occurs in isolation and ‘complex’ when associated with other clinical signs. Here,
we identify a homozygous frameshift alteration occurring in the last coding exon of the protein
tyrosine phosphatase type 23 (PTPN23) gene in an extended Palestinian family associated with
autosomal recessive complex HSP. PTPN23 encodes a catalytically inert non-receptor protein tyrosine
phosphatase that has been proposed to interact with the endosomal sorting complex required
for transport (ESCRT) complex, involved in the sorting of ubiquitinated cargos for fusion with
lysosomes. In view of our data, we reviewed previously published candidate pathogenic PTPN23
variants to clarify clinical outcomes associated with pathogenic gene variants. This determined that a
number of previously proposed candidate PTPN23 alterations are likely benign and revealed that
pathogenic biallelic PTPN23 alterations cause a varied clinical spectrum comprising of complex HSP
associated with microcephaly, which may occur without intellectual impairment or involve more
severe neurological disease. Together, these findings highlight the importance of the inclusion of the
PTPN23 gene on HSP gene testing panels globally.

Keywords: HSP; hereditary spastic paraplegia; PTPN23; protein tyrosine phosphatase; ESCRT

1. Introduction

The hereditary spastic paraplegias (HSPs) are a heterogeneous group of monogenic
neurodegenerative diseases characterised by progressive spasticity of the lower limbs, with
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a pooled global prevalence of 1.8/100,000 [1]. In clinical practice, HSPs are subclassified
into either (i) uncomplicated (or pure) when neurologic impairment is limited to progres-
sive lower-extremity spastic and weakness, hypertonic urinary bladder disturbance, and
mild diminution of lower-extremity vibration sensation or (ii) complicated (or complex)
when these features are accompanied by other neurological or non-neurological signs [2].
Over recent years, advancements in our understanding of the genetic architecture of HSP
have led to it being recognised as one of the most genetically heterogeneous of inherited
disorders, with pathogenic sequence alterations in affected families identified in at least
72 genes in molecules associated with a plethora of cellular roles [3]. In addition, many
other genetic disorders have also been described in which spasticity is a key diagnostic
feature, underscoring the immense clinical, genetic, and molecular complexities of this
clinical presentation [4,5].

PTPN23 encodes the ubiquitously expressed, non-receptor protein tyrosine phos-
phatase (PTPN) type 23, also known as the histidine-rich (HIS)-domain protein tyrosine
phosphatase (HDPTP) [6]. PTPNs have a well-defined function in cellular signal trans-
duction by regulating tyrosine residue phosphorylation [7,8]. The specific cellular roles
of PTPN23 include interactions with mitogen-activated protein kinase signalling (MAPK)
pathways [9], ciliogenesis [10], and regulation of splicing through regulation of survival of
motor neurone (SMN) [11]. PTPN23 has also been shown to interact with the endosomal
sorting complex required for transport (ESCRT) involved in the sorting of ubiquitinated
cargos into multivesicular bodies (MVBs) for fusion with lysosomes and cargo protein
degradation [12]. Here we present our genetic and clinical findings of PTPN23-related com-
plex HSP identified in a Palestinian community, alongside a review of recently published
candidate PTPN23 sequence alterations which together define biallelic PTPN23 sequence
alterations as a cause of complex HSP associated with microcephaly.

2. Materials and Methods
Genetic Studies

Blood samples were obtained with informed consent (Ethical Approval; the Pales-
tinian Health Research Council PHRC/HC/518/19) for DNA extraction using standard
procedures. Whole exome sequencing (WES) was performed in-house, using the Twist
Human Core Exome capture on an Illumina NextSeq500 sequencer. Reads were aligned to
the human genome reference sequence (hg19) using BWA-MEM (v0.7.17), mate pairs were
fixed and duplicates removed using Picard (v2.15), InDel realignment and base quality
recalibration were performed using GATK (v3.7.0), SNVs and InDels were detected us-
ing GATK HaplotypeCaller and annotated using Alamut batch (v1.10). Read depth was
determined for the whole exome using GATK DepthOfCoverage, conforming to GATK
Best Practices. Copy number variants (CNVs) were detected using SavvyCNV [13]. Vari-
ants were then filtered on call quality, gnomAD allele frequency, presence in databases of
pathogenic variants, and inheritance pattern. Orthogonal validation of the PTPN23 variant
was undertaken by dideoxy sequencing.

3. Results
3.1. Clinical Findings

In the current study, eight individuals affected by a microcephalic form of complex
HSP were identified from a single extended pedigree. The family entails four interre-
lated nuclear Arab Palestinian families from the same community living in the West Bank
(Figure 1), each likely sharing distant common ancestors. Of these, six individuals aged
between 10 and 25 years old were available for genetic studies and detailed clinical pheno-
typing (Individuals V:2, V:3, V:4, V:5, V15, and V20 (Table 1)).



Brain Sci. 2021, 11, 614 3 of 9

Brain Sci. 2021, 11, x FOR PEER REVIEW 
 4 of 10 
 

 
Figure 1. Truncating PTPN23 gene variants that escape nonsense-mediated decay are associated with complex spastic paraplegia: (a) simplified pedigree of the Arab Palestinian family 
investigated, demonstrating segregation of the PTPN23 variant [‘+’: NM_015466.3:c.4719delins p.(Pro1572Thrfs*12), ‘-’: wild type]. (b) Electropherogram revealing the DNA sequence 
of the PTPN23 NM_015466.3:c.4719delins variant in homozygous state in an affected individual (Individual V:4). (c) A simplified gene diagram showing exon-intron organisation of 
PTPN23 (NM_015466.3) and the corresponding domain architecture of the PTPN23 protein. The position of the NM_015466.3:c.4719delins p. Pro1572Thrfs*12 variant is shown [red line] 

Figure 1. Truncating PTPN23 gene variants that escape nonsense-mediated decay are associated with complex spastic paraplegia: (a) simplified pedigree of the Arab Palestinian family
investigated, demonstrating segregation of the PTPN23 variant [‘+’: NM_015466.3:c.4719delins p.(Pro1572Thrfs*12), ‘-’: wild type]. (b) Electropherogram revealing the DNA sequence of
the PTPN23 NM_015466.3:c.4719delins variant in homozygous state in an affected individual (Individual V:4). (c) A simplified gene diagram showing exon-intron organisation of PTPN23
(NM_015466.3) and the corresponding domain architecture of the PTPN23 protein. The position of the NM_015466.3:c.4719delins p. Pro1572Thrfs*12 variant is shown [red line] in relation
to the NM_015466.3:c.4651_4652dup; p.(Leu1552Hisfs*33) [14] [black line]. (d). PTPN23 protein alignment of human wild type and five species orthologues, alongside the predicted
outcomes of the p.(Pro1572Thrfs*12) and p.(Leu1552Hisfs*33) variants.
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Table 1. A comparison of clinical findings of affected individuals homozygous for final exon frameshift PTPN23 gene variants.

Reference V:2 V:3 V:4 V:5 V:15 V:20 Bend et al. Patient 6. [14]

Genotype +/+ +/+ +/+ +/+ +/+ +/+ p.(Leu1552Hisfs*33)
/p.(Leu1552Hisfs*33)

Sex, Age last seen F, 17y10m F, 14y2m M, 22y4m F, 10y1m F, 16y11m F, 25y1m F, 11y
Age of onset 6y 6y 4-5y 6y 7y 7y NK
OFC (cm) [SD1] 50.5 [−3.8] 50.8 [−3.1] NK 49.2 [−3.6] 52 [−2.5] 50.8 [−3.4] microcephaly
Height (cm) [SD1] 152 [−1.9] 143 [−2.7] 169 [−1.3] 134.5 [−0.7] 152 [−1.9] 152 [−2.0] NK
Weight (kg) [SD1] 66 [+0.9] 59 [+0.9] 66 [−0.6] NK NK 55 [−0.4] NK

Dev. impairment 3mild 3mild 8 university 3mild 3mild 8 university 3no speech
Toe walking 8 3 3 3 3 3 NK
Speech delay 8 8 8 8 8 8 NK

Upper limb neurology normal normal normal normal normal normal NK
Lower limb spasticity 3 3 3 3 3 3 3

Lower limb DTRs +++ +++ +++ +++ +++ +++ NK
Babinski reflex ↑ ↑ ↑ ↑ ↑ ↑ NK
Hypo/paraesthesia 8 3episodic 3episodic 3episodic 3 3 NK
Light touch sensation normal normal normal normal normal normal NK
Pain sensation normal normal normal normal normal normal NK

Seizures 8 8 8 8 8 8 8 normal EEG
Bulbar features 8 8 8 8 8 8 NK
Sphincter dysfunction 8 8 8 8 8 8 NK
Optic atrophy NK NK NK NK NK NK 3& strabismus
Horizontal nystagmus 3 3 3 3 8 3 NK

MRI brain NP normal normal NP NP NP enlarged lateral ventricle,
delayed myelination

Other DDH, dysphagia constipation

Note: (+): NM_015466.3:c.4719delins p.(Pro1572Thrfs*12), (↑): upgoing, (3): indicates presence of a feature in an affected subject, (8): indicates absence of a feature in an affected subject, (+++): exaggerated
reflexes, cm: centimetres, DDH: developmental dysplasia of the hip, Dev: Developmental, DTRs: deep tendon reflexes, EEG: electroencephalogram, F: female, m: months, M: male, MRI: magnetic resonance
imaging, NK: not known, NP: not performed: OFC: occipitofrontal circumference, SD: standard deviations, y: years. 1 Height, weight, BMI, and OFC Z-scores were calculated using LMS growth, a Microsoft
Excel add-in to access growth references based on the LMS method (https://www.healthforallchildren.com/lmsgrowth/ accessed 07 May 2021).

https://www.healthforallchildren.com/lmsgrowth/
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All affected individuals displayed progressive, lower-limb spasticity with associated
hyperreflexia, upgoing plantar responses, and muscle weakness. This resulted in a narrow-
based gait with evidence of proximal spasticity, bilateral foot drop, and excessive lumbar
lordosis in Individual V:4 (Video 1). Symptoms consistent with paraesthesia in the distal
lower limbs were also described, but the sensory examination was unremarkable. Lower
limb nerve conduction studies were performed in Individual V:20 and were normal. Upper
limb reflexes, motor function, and sensation were all unaffected, and there was no clinical
evidence of bulbar involvement. Although all affected individuals were microcephalic
(−2.5 to −3.8 standard deviations [SDs]), there was a variable degree of intellectual im-
pairment from mild (able to read and write) to normal (two individuals were in tertiary
education, V:4, V:20), and none were affected by seizures. Early motor milestones were
not delayed (all individuals walking by 14 months), although there were subtle signs of
neurological impairment in the first decade with toe walking indicative of spasticity, being
the first sign in most and requiring surgery in Individual V:4. Typically, by age 6–7 years,
affected individuals were noted to have developed an unsteady gait with frequent falling
which worsened progressively. Around the same age, affected individuals developed nys-
tagmus. MRI neuroimaging was performed in Individual V:3 and V:4 and demonstrated
no structural pathology.

3.2. Genetic Findings

Assuming that an autosomal recessive founder variant was responsible for the condi-
tion, WES was performed on DNA from Individuals V:3 and V:20 to identify candidate
sequence variants common to both. Plausible compound heterozygous and structural vari-
ants located genome wide were also considered, but none were identified that cosegregated
with the condition. Filtering identified a complex deletion/insertion within the coding re-
gion of the PTPN23 gene [Chr3(GRCh38):g.47412993delCCinsA NM_015466.3:c.4719delins
p. Pro1572Thrfs*12] (Figure 1b) predicted to cause a frameshift in the last exon and thus
would be expected to escape nonsense-mediated decay, resulting in a polypeptide trun-
cated by 64 amino acids (1572, compared to the wild type 1636). The PTPN23 variant was
confirmed using dideoxy sequencing and found to cosegregate among all family members
as expected for an autosomal recessive cause of the disease (Figure 1a). The variant is
listed in heterozygous state in only one African/African American individual in gnomAD
v2.1.1, was not reported in homozygous state, is absent from gnomAD v3.1, and has not
been previously reported in ClinVar or HGMDPro. This variant is located within a likely
autozygous ~26Mb region of homozygosity shared by both affected individuals, also con-
taining one other rare missense variant in the gene BSN [Chr3(GRCh38):g. 49652264C>T
NM_003458.3:c.2708C>T p.Thr903Met]. The variant was predicted damaging by both SiFT
and PolyPhen2, but the gene has no known association with human disease.

4. Discussion

Here, we present our clinical and genetic findings of a complex form of hereditary
spastic paraplegia associated with biallelic PTPN23 variants in an extended Palestinian
kinship of eight affected individuals, six of whom were available for investigation. The
c.4719delins variant identified in this study resides within the last exon of the PTPN23
gene and therefore is predicted to escape nonsense-mediated decay. This alteration may
thus result in the production of a modestly truncated PTPN23 polypeptide product with
an altered C-terminus (Figure 1d), although molecular studies are required to confirm this
and the degree to which the mutant molecule produced retains functionality.

Previously, four individual case reports have identified PTPN23 gene alterations as a
candidate cause of neurological disease in four unrelated individuals with severe epilepsy
and neurodevelopmental delay, sometimes classified as developmental and epileptic en-
cephalopathy (DEE; [ILAE classification]) (Table S1) [15–18]. Subsequently, a further study
identified biallelic candidate PTPN23 gene variants in seven additional individuals affected
by a variable degree of neurodevelopmental impairment, with structural brain abnormali-
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ties described in some patients [14]. However, current publicly available gnomAD allele
frequency data do not support pathogenicity for the PTPN23 gene variants identified in
two of the individuals in these studies (Table S2) [14]. Additionally, the clinical features
described in a further three of these cases are relatively non-specific and diverge consider-
ably from the primarily neurological outcomes associated with the originally described
pathogenic PTPN23 variants (Patients 1–3, Table S3).

In the extended Palestinian family investigated here, all affected individuals displayed
lower limb weakness, muscle wasting, hyperreflexia, and upgoing plantar reflexes, with
clawed toes being noted in older affected individuals. The gait displays features of both
spasticity and foot drop with distal weakness and wasting. The normal sensory examina-
tion and nerve conduction studies are in keeping with a motor neuronopathy, suggesting
pathology with combined upper and lower neuron involvement similar to that seen in
SPG17 (Silver syndrome) [19]. All affected individuals were also microcephalic, and the
majority (but notably not all) had mild intellectual impairment. These clinical features align
closely with those in a previously reported case (Table 1: Bend et al. Patient 6) in whom a
distinct C-terminal frameshift [NM_015466.3:c.4651_4652dup; p.(Leu1552Hisfs*33)] variant
was identified, which closely mirrors the c.4719delins p.(Pro1572Thrfs*12) Palestinian
PTPN23 alteration and is predicted to result in truncation of the protein to exactly the same
length (1572/1636 amino acids). This individual also has microcephaly and developmental
impairment, spastic diplegia, and contractures at eleven years of age, in the absence of
seizures. While molecular studies are required to investigate this further, the consistent clin-
ical outcomes defined in all of these individuals (Table 1) indicates that PTPN23 last exon
C-terminal frameshift gene mutations that occur subsequent (C-terminal) to the tyrosine–
protein phosphatase domain, may give rise to a polypeptide product which retains partial
functionality. The C-terminal disrupted by these mutations is proline rich (Figure 1d);
although no specific function for this region has yet been identified, another such proline
rich PTPN23 region (the HIS domain) has been shown to be of functional importance for
protein–protein interaction with growth factor receptor-bound protein 2 (Grb2) family of
proteins [20]. Although the C-terminal proline-rich domain was shown not to modulate
this interaction, it is possible that it is involved in other protein–protein interactions.

While overlapping, a more severe neurological phenotype involving seizures, mi-
crocephaly, progressive spasticity, brain atrophy, and hypomyelination of white matter
appears to be associated with PTPN23 missense variants located within the BRO1-like [16],
tyrosine–protein phosphatase [15], and ALIX domains [17,18] (Table S1, Figure S4). This in-
dicates a more deleterious outcome of variants within these functionally important regions,
associated with more severe clinical signs. The importance of the BRO domain and its
paired ALIX domain is unsurprising since it is conserved among many PTPN23 orthologues
and also observed in human programmed cell death six-interacting protein (PDCD6IP),
which also interacts with ESCRT complexes. The ALIX domain in particular has been
identified to have an important role in interacting with and recruiting such complexes [21].
Although the tyrosine–protein phosphatase domain has previously been shown to be
catalytically inert [11], it seems likely to have acquired other as yet unknown functional
roles. As the BRO/PTP/ALIX missense alterations identified by Sowada et al. [17] and
Smigiel et al. [18] (Table S1) occurred in conjunction with a loss of function alteration, any
polypeptide produced would likely derive from the missense-harbouring allele only, as-
suming degradation of the loss of function allele. As such, the similarly severe neurological
disease may thus also be expected in individuals found to be homozygous/compound
heterozygous for missense alterations in these regions.

In humans, 17 PTPNs have been identified [22], each with their individual expres-
sion patterns and characterised by different regulatory sequences that flank the catalytic
domain and modulate activity or control substrate specificity [8], most of which do not
currently have an associated human disorder resulting from their mutation. A notable
exception is PTPN11 involved in the Ras/MAPK signal transduction pathway, the most
common gene associated with the autosomal dominant developmental disorder Noonan
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syndrome [23,24]. PTPN23 encodes a catalytically inactive non-receptor protein tyrosine
phosphatase [11] with an ESCRT-I-related role in endocytic sorting of ubiquitinated cargos
into multivesicular bodies [12], as well as likely roles in ciliogenesis [10], regulation of the
survival motor neuron (SMN) complex function in the assembly of splicing factors [6] and
as a negative regulator of Ras-mediated mitogenic activity [9]. Four PTPN23 polypeptide
functional domains have been identified, including an ALIX domain believed to have
an important ESCRT complex role [21]. ESCRT complexes are concentrated at pre- and
postsynaptic sites and likely have a role in synaptic vesicle recycling, degradation, and
growth. Previous studies support the hypothesis that dysfunction of the ESCRT complex
may cause neurodegeneration presenting as HSP including variants in ubiquitin associated
protein 1 (UBAP1), a component of the ESCRT-I complex, in which variants have recently
been associated with autosomal dominant pure HSP (SPG80) with childhood onset [25].
In addition, the most common cause of HSP involving variants in spastin (SPG4) has a
well-documented role in interacting with the ESCRT-III complex-associated endosomal
protein CHMP1B [26,27] via an MIT domain (contained within microtubule interacting and
trafficking molecules) [28], also present in spartin (SPG20) [29], another HSP-associated
molecule [30,31]. This provides a potential mechanism to explain the important role of
PTPN23 function in the long-term health of motor neurones and the role of PTPN23
mutation in complex HSP4.

5. Conclusions

Taken together, our findings define pathogenic biallelic PTPN23 variants as a cause of
a variable clinical spectrum of neurological disease comprising of complex HSP associated
with microcephaly, which may occur without intellectual impairment, or involve more
severe neurological disease. Given that intellectual impairment may be absent in this
clinically variable condition, it is important that PTPN23 be considered for inclusion on
spastic paraplegia gene testing-diagnostic panels internationally.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/brainsci11050614/s1, Table S1: Candidate PTPN23 gene variants identified in patients with
severe neurological impairment and seizures, Table S2: Candidate PTPN23 gene variants, proposed
by Bend et al. 2020, Table S3: Candidate PTPN23 gene variants identified in patients with non-specific
developmental impairment by Bend et al. 2020 not excluded by allele frequency data in population
databases, Supplementary Figure S4: Position of previously published PTPN23 candidate missense
variants and small in-frame deletions in relation to known PTPN23 protein domain architecture,
Video 1: A demonstration of the gait in the PTPN23-related complex hereditary spastic paraplegia
(Individual V4).
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