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Abstract – Recently, the sparse coding based on unsupervised 

learning has been widely used for image classification. The sparse 

representation is assumed to be linearly separable, and therefore 

a simple classifier, like softmax regression, is suitable to perform 

the classification process. To investigate that, this paper presents 

a novel approach for semantic place recognition (SPR) based on 

Restricted Boltzmann Machines (RBMs) and a direct use of tiny 

images. These methods are ables to produce an efficient local 

sparse representation of the initial data in the feature space. 

However, data whitening or at least local normalization is a 

prerequisite for these approaches. In this article, we empirically 

show that data whitening forces RBMs to extract smaller 

structures while data normalization forces them to learn larger 

structures that cover large spatial frequencies. We further show 

that the latter ones are more promising to achieve the state-of-the-

art performance for a SPR task.  

 
Keywords – Image Classification, Semantic Place Recognition, 

Restricted Boltzmann Machines, Softmax Regression, Sparse 

Coding.  
 

I. INTRODUCTION  

t is indeed required for an autonomous service robot to be 

able to recognize the environment in which it lives and to 

easily learn the organization of this environment in order to 

operate and interact successfully. To achieve that goal, 

different solutions have been proposed, some based on metric 

localization, and some other based on topological localization. 

However, in these approaches, the place information is 

different from the information used for the determination of 

the semantic categories of places. Thus, the ability for a 

mobile robot to determine the nature of its environment 

(kitchen, room, corridor, etc.) remains a challenging task. The 

knowledge of its metric coordinates or even the neighborhood 

information that can be encoded into topological maps is 

indeed not sufficient. The SPR is however required for a large 

set of tasks. It can be used as contextual information which 

fosters object detection and recognition when it is achieved 

without any reference to the objects present in the scene. 

Moreover, it is able to build an absolute reference to the robot 

location, providing a simple solution for problems where the 

localization cannot be deduced from neighboring locations, 

such as in the kidnapped robot or the loop closure problems.  

II. RELATED WORK  

Although most of the proposed approaches to the problem of 

robot localization have given rise Simultaneous Localization 

and Mapping (SLAM) techniques [1], significant recent works 

have been developed for this problem based on visual 

descriptors. In particular, these descriptors are either based on 

global images features using global detectors, like GiST and 

CENTRIST [2, 3], or on local signatures computed around 

interest points using local detectors, like SIFT and SURF [4, 

5]. However, these representations first need to use Bag-of-

Words (BoWs) methods, which consider only a set of interest 

in the image, to reduce their size and then followed by the use 

of vector quantization such that the image is eventually 

represented as a histogram. Discriminative approaches can be 

used to compute the probability to be in a given place 

according to the current observation. Generative approaches 

can also be used to compute the likelihood of an observation 

given a certain place within the framework of Bayesian 

filtering. Among of these approaches, some works [6] omit the 

quantization step and model the likelihood as a Gaussian 

Mixture Model (GMM). Recent approaches also propose to 

use naive Bayes classifiers and temporal integration that 

combine successive observations [7]. 

SPR therefore requires the use of an appropriate feature 

space that allows an accurate and rapid classification. 

Contrarily to these empirical methods, new machine learning 

methods have recently emerged which strongly related to the 

way natural systems code images [8]. These methods are based 

on the consideration that natural image statistics are not 

Gaussian as it would be if they have had a completely random 

structure [9]. The auto-similar structure of natural images 

allowed the evolution to build optimal codes. These codes are 

made of statistically independent features and many different 

methods have been proposed to construct them from image 

datasets. Imposing locality and sparsity constraints in these 

features is very important. This is probably due to the fact that 

any simple algorithms based on such constraints can achieve 

linear signatures similar to the notion of receptive field in 

natural systems. Recent years have seen an interesting interest 

in computer vision algorithms that rely on local sparse image 

representations, especially for the problems of image classific-
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ation and object recognition [10-12]. Moreover, from a 

generative point of view, the effectiveness of local sparse 

coding, for instance for image reconstruction [13], is justified 

by the fact that a natural image can be reconstructed by a 

smallest possible number of features. However, while a sparse 

representation has been assumed to be a linearly separable in 

several works [12, 16], and thus simplifies the overall classifi-

cation problem, the question of whether smaller or larger 

sparse features are more appropriate for SPR remains an open 

question. So, this paper investigates the data normalization on 

the detection of features and SPR performance. 

It has been shown that Independent Component Analysis 

(ICA) produces localized features. Besides, it is efficient for 

distributions with high kurtosis well representative of natural 

image statistics dominated by rare events like contours; 

however the method is linear and not recursive. These two 

limitations are released by DBNs [14] that introduce non-

linearities in the coding scheme and exhibit multiple layers. 

Each layer is made of a RBM, a simplified version of a 

Boltzmann machine proposed by [15]. Each RBM is able to 

build a generative statistical model of its inputs using a 

relatively fast learning algorithm, Contrastive Divergence 

(CD), first introduced by [15]. Another important character-

istic of the codes used in natural systems, the sparsity of the 

representation [8], is also achieved in DBNs. 
 

III. MODEL DESCRIPTION 

A. Image Preprocessing  

The typical input dimension for a DBN is approximately 

1000 units (e.g. 300300x  pixels). Dealing with smaller 

patches could make the model unable to extract interesting 

features. Using larger patches can be extremely time-

consuming during features learning. Three solutions can be 

envisioned to address this problem. First, selecting random 

patches from each image [17], second, using convolutional 

architectures [18], third, reducing the size of each image to a 

tiny image [19]. The first solution extracts local features and 

the characterization of an image using these features can only 

be made using BoWs approaches we wanted to avoid. The 

second solution shows the same limitations as the first one and 

additionally gives raise to extensive computations that are only 

tractable on Graphics Processing Unit architectures.  

However, tiny images have been successfully used for 

classifying and retrieving images from the 80-million database 

developed at MIT [19]. They showed that the use of tiny 

images coupled with a DBN approach lead to code each image 

by a small binary vector defining the elements of a feature 

alphabet that can be used to optimally define the considered 

image. The binary vector acts as a bar-code while the alphabet 

of features is computed only once from a representative set of 

images. The power of this approach is well illustrated by the 

fact that a relatively small binary vector (like the ones we use 

as the output of our DBN structure) largely exceeds the 

number of images that have to be coded even in a huge data-

base. So, for these reasons we have chosen image reduction. 

On the other hand, natural images are highly structured and 

contain significant statistical redundancies, i.e. their pixels 

have strong correlations [20]. Natural images bear considerable 

regularities in their first and second order statistics (spatial 

correlations), which can be measured using the autocorrelation 

function or the Fourier power spectral density [21]. These 

correlations are due to the redundant nature of natural images 

(adjacent pixels usually have strong correlations except around 

edges). The presence of these correlations allows, for instance, 

image reconstruction using Markov Random Fields. It has thus 

been shown that the edges are the main characteristics of the 

natural images and that they are rather coded by higher order 

statistical dependencies [21]. It can be deduced from this 

observation that the statistics of natural images are not 

Gaussian. These statistics are dominated by rare events like 

contours, leading to high-kurtosis long-tailed distributions. 

Pre-processing the initial images to remove these expected 

order-two correlations is known as whitening. It has been 

shown that whitening is a useful pre-processing strategy in 

ICA [22]. It seems also a mandatory step for the use of 

clustering methods in object recognition [23]. Whitening being 

a linear process, it does not remove the higher order statistics 

or regularities present in the data. The theoretical grounding of 

whitening is simple: after centering, the data vectors are 

projected onto their principal axes (computed as the Eigen-

vectors of the variance-covariance matrix) and then divided by 

the variance along these axes. In this way, the data cloud is 

sphericized, letting appear only the usually non-orthogonal 

axes corresponding to its higher-order statistical dependencies. 

Another way to pre-process the original data is to perform 

local normalization. In this case, each patch is normalized by 

subtracting the mean and dividing by the standard deviation of 

its elements. For visual data, this corresponds to local 

brightness and contrast normalization. One can find in [23] a 

study of whitening and local normalization and their influences 

on object recognition task. 

B. Gaussian-Bernoulli RMBs 

Unlike a classical Boltzmann Machine, a RBM is a bipartite 

undirected graphical model },,,{ jiij cbw  linking, through a 

set of weights
ijw between visible and hidden units and biases 

},{ ji cb a set of visible units v  to a set of hidden units h . For a 

standard RBM, a joint configuration of the binary visible units 

and the binary hidden units has an energy function given by: 
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The probability of the state for a unit in one layer 

conditional to the state of the other layer can therefore be 

easily computed. According to Gibbs distribution: 
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where )(Z  is a normalizing constant. After marginalization, 

the probability of a particular hidden state configuration h  can 

be derived as follows: 
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It can be derived [24] that the conditional probabilities of a 

standard RBM are given as follows: 
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where )1(1)( xex   is the logistic function.  

Since binary units are not appropriate for multivalued inputs 

like pixel levels, as suggested by Hinton [25], in the present 

work visible units have a zero-mean Gaussian activation 

scheme: 

).,();h|1( 2 
j

jijii hwbvP                              (6) 

where 2  denotes the variance of the noise. In this case the 

energy function of Gaussian-Bernoulli RBM is given by: 
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C. Training RBMs with a Sparsity Constraint   

To learn RBM parameters, it is possible to maximize the 

log-likelihood in a gradient ascent procedure. Therefore, the 

derivative of the log-likelihood of the model over a training set 

D  is given by: 
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where the first term represents an average with respect to the 

model distribution and the second one an expectation over the 

data. Although the second term is straightforward to compute, 

the first one is often intractable. This is due to the fact that 

computing the likelihood needs to compute the partition 

function, ),(Z that is usually intractable. However, Hinton 

[15] proposed a quick learning procedure called CD. This 

learning algorithm is based on the consideration that 

minimizing the energy of the network is equivalent to 

minimize the distance between the data and a statistical 

generative model of it. A comparison is made between the 

statistics of the data and the statistics of its representation 

generated by Gibbs sampling. It has been shown that few steps 

of Gibbs sampling (most of the time reduced to one) are 

sufficient to ensure the convergence. For RBM, the weights of 

the network can be updated using the following equation:  
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where   is the learning rate, 0v  corresponds to the initial data 

distribution, 0h  is computed using equation 4, nv  is sampled 

using the Gaussian distribution in equation 6 and with n  full 

steps of Gibbs sampling, and nh  is again computed from 

equation 4.  

Concerning the sparsity constraint in RBMs, we follow the 

same approach developed in [26]. This method introduces a 

regularizer term that makes the average hidden variable 

activation low over the entire training examples. Thus, the 

activation of the model neurons becomes also sparse. As 

illustrated in [26], given a training set  )()1( ,..., mvv  including 

m  examples, we pose the following optimization problem:  

.]|[
1

),(logminimize

2

1 1

)()()()(

1

},,{  
 











n

j

m

l

ll

j

h

ll
m

l

cbw vh
m

phvP
jiij


(10) 

where [.]  is the conditional expectation given the data, p  is 

the sparsity target controlling the sparseness of the hidden 

units 
jh , and   is the sparsity cost. Thus, after involving this 

regularization in the CD learning algorithm, the gradient of the 

sparsity regularization term over the parameters 
ijw  in 

equation 9 can be rewritten as follows: 
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where m , in this case, represents the size of the mini-batch 

and )()(  
i jij

l

i

l

j cwvp  . 

 

D. Layerwise Training for DBNs 

A DBN is a stack of RBMs trained in a greedy layerwise and 

bottom-up fashion introduced by [14]. The model parameters 

at layer 1i  are frozen and the conditional probabilities of the 

hidden units are used to generate the data to train the model 

parameters at layer i . This process can be repeated across the 

layers to obtain sparse representations of the initial data that 

will be used as final output for the classification process.   

IV. COLD DATABASE DESCRIPTION 

The COLD database (COsy Localization Database) was 

originally developed by [27] for the purpose of robot 

localization. It contains 137,069 of labeled 480640x  images 

acquired at 5 frames/sec during the robot exploration of three 

different laboratories (Freiburg, Ljubljana, and Saarbruecken). 

Two sets of paths (standard A and B) have been acquired 

under different illumination conditions (sunny, cloudy and 

night), and for each condition, one path consists in visiting the 

different rooms (corridors, printer areas, etc.). These walks 

across the laboratories are repeated several times. Although 

color images have been recorded during the exploration, only 

gray images are used since previous works have shown that in 

the case of the COLD database colors are weakly informative 

and made the system more illumination dependent [27]. 
 

 
Figure 1: Samples from the COLD database. The corresponding 

tiny images are displayed bottom right. One can see that, despite the 

size reduction, these small images remain fully recognizable. 

 

As proposed by [19] the image size is reduced to 2432x  (see 

figure 1). The final set of tiny images is centered, whitened, 

and normalized to create two databases called whitened-tiny-

COLD and normalized-tiny-COLD. Consequently, the variance 

in equation 6 is set to 1. Contrarily to [19], these preprocessed 

tiny images are used directly as input vector of the network. 
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Figure 2: First column: Filters samples obtained by training a first RBM layer on the whitened-tiny-COLD database. Second column: 

filters samples obtained by training a first RBM layer on the normalized-tiny-COLD database. Third column: The Log-Log representation 

of the mean Fourier power spectrum for 256 patches sampled from initial, whitened, and normalized databases respectively. 
 

 

I. EXPERIMENTAL RESULTS 

A. Effect of Normalization on the Feature Space 

Preliminary trials have shown that the optimal structure of 

the DBN in terms of final classification score is 768-256-128. 

The training protocol is similar to the ones proposed in [26, 

28] (300 epochs, a mini-batch size of 100, a learning rate of 

0.002, a weight decay of 0.0002, momentum, a sparsity target 

of 0.02, and a sparsity cost of 0.02). The features shown in 

figure 2 (1
st
 column) have been extracted by training the first 

RBM layer on the whitened database. Some of them represent 

parts of the corridor, which is over-represented in the database 

and correspond to long sequences of images quite similar 

during the robot exploration. Some others are localized and 

correspond to small parts of the initial views, like edges and 

corners that can be identified as room elements. The features 

shown in figure 2 (2
nd

 column) have been obtained using the 

normalized data. They look very different from those obtained 

from the whitened data. Parts of rooms are much more 

represented and the range of spatial frequencies covered by the 

features is much broader. However, for both cases, the comb-

inations of these initial features in higher layers correspond to 

larger structures more characteristic of the different rooms. 

It is obvious that the features extracted from the whitened 

data are more localized. This underlines that data whitening 

clearly changes the characteristics of the learned bases. One 

explanation could be that the second order correlations are 

linked to the presence of low frequencies in the images. If the 

whitening algorithm removes these correlations in the original 

dataset, it leads to whitened data covering only high spatial 

frequencies. The RBM algorithm in this case finds only high 

frequency features. However, the features learned from the 

normalization data remain sparse but cover a broader spectrum 

of spatial frequencies. These differences between normalized 

and whitened data have already been observed in [24] and 

related to better performances for the normalized data on 

CIFAR-10 in an object recognition task. 

To better understand why features obtained from whitened 

and normalized data are different, we computed the mean 

Fourier spectral density for both cases and we compared them 

to the same function for the original data. We plotted the mean 

of the Log Fourier power spectral density of all patches 

according to the Log of the frequencies as shown in figure 2 

(3
rd

 column). The scale law in f1  characteristic of natural 

images is approximately verified as expected for the initial 

patches. For the local normalization it is also conserved (the 

shift between the two curves is only due to a multiplicative 

difference in the signal amplitude between the original and the 

locally normalized patches). It means that the frequency 

composition of the locally normalized images differs from the 

initial one only by a constant factor. The relative frequency 

composition is the same as in initial images. On the contrary, 

whitening completely abolishes this dependency of the signal 

energy with frequency. This means that whitening equalizes 

the role of each frequency in the composition of the images. 

This suggests a relationship between the scale law of natural 

images and the first two moments of the statistics of these 

images. It is interesting to underline that we have here a 

manifestation of the link between the statistical properties of 

an image and its structural properties in terms of spatial 

frequencies. This link is well illustrated by the Wiener-

Khintchine theorem and the relationship between the 

autocorrelation function of the image and its power spectral 

density. Concerning the extracted features, these observations 

allow deducing that an equal representation (in terms of 

amplitude) of all frequencies in the initial signal gives rise to 

an over-representation of high frequencies in the obtained 

features. It could be due to the fact that, in the whitened data, 

the energy contained in each frequency band increases with the 

frequency while it is constant in initial or normalized images. 

We can argue that low frequency dependencies are related 

to the statistical correlation between neighbor pixels. Thus the 

suppression of these second order correlations would suppress 

these low frequencies in the whitened patches. The resulting 

features set is expected to contain a larger number of low 

frequency less localized features, what is actually observed. 
 

B. Supervised Learning of Places 

After feature extraction, a classification was performed in 

the features space. Assuming that the non-linear transform 

operated by DBNs improves the linear separability of the data, 

a simple regression method was used to perform the 

classification process in the initial case. To express the final 

result as a probability that a given view belongs to one room, 

we normalize the output with a softmax regression method. 

We have also investigated the classification phase using 

Support Vector Machine (SVM) in order to demonstrate that 

the DBN computes a linear separable signature and thus it 

should not affect the final classification results. 

The samples have been taken from each laboratory and each 

different illumination condition was trained separately as in [4]. 
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Table 1: Average classification results for three different laboratories and three training conditions.  

Laboratory name Saarbrucken Freiburg Ljubljana 

Training: Condition Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny 

Ullah's work 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77% 

No thr. using whitened features  70.21% 70.80% 70.59% 70.43% 70.26% 67.89% 72.64% 72.70% 74.69% 

SVM using whitened features 69.92% 71.21% 70.70% 70.88% 70.46% 67.40% 72.20% 72.57% 74.93% 

0.55 thr. using whitened features 84.73% 87.44% 87.32% 85.85% 83.48% 86.96% 84.99% 89.64% 85.26% 

No thr. using normalized features 80.41% 81.29% 83.66% 81.65% 80.08% 79.64% 83.14% 82.38% 83.87% 

0.55 thr. using normalized features 86.00% 88.35% 87.36% 88.15% 85.00% 87.98% 85.95% 90.63% 86.86% 

 

For each image the softmax network output gives the 

probability of being in each of the visited rooms. According to 

maximum likelihood principles, the largest probability value 

gives the decision of the system. Thus, using features learned 

from the whitened data, we obtain an average of correct 

answers ranging from 67.89% to 74.69% according to 

different conditions and laboratories as shown in table 1 

(second row). In contrast, using features learned from the 

normalized data, we obtain an average of correct answers 

ranging from 79.64% to 83.87% according to the different 

conditions and laboratories as shown in table 1 (fifth row). 

These results demonstrate that features from an RBM 

trained on the normalized data outperformed those from an 

RBM trained on the whitened data. It illustrates the fact that 

the normalization process keeps much more information or 

structures of the initial views which are very important for the 

classification process. In contrast, data whitening completely 

removes the first and second order statistics from the initial 

data which allows DBNs to extract higher-order features. This 

demonstrates that data whitening could be useful for image 

coding. However, it is not the optimal pre-processing method 

in the case of image classification. This is in accordance with 

the results in the literature showing that first and second order 

statistics based features are significantly better than higher 

order statistics in terms of classification [28, 29]. 

However, one way is still open to improve these results is to 

use the decision theory. The detection rate has been computed 

from the classes with the highest probabilities, irrespective of 

the relative values of these probabilities. Some of them are 

close to the chance (in our case 0.20 or 0.25 depending on the 

number of categories to recognize) and it is obvious that, in 

such cases, the confidence in the decision made is weak. Thus, 

below a given threshold, when the probability distribution 

tends to become uniform, one could consider that the answer 

given by the system is meaningless. This could be due to the 

fact that the given image contains common characteristics or 

structures that can be found in two or more classes. The effect 

of the threshold is then to discard the most uncertain results. 

Table 1 (4
th

 and 6
th

 rows) show the average classification 

results for a threshold of 0.55 (only results where 

,55.0)|(max  IcXp k
 and )( kcXP   is the probability that the 

current view I  belongs to ,kc  are retained). One can see that 

the results are significantly improved. They are ranging from 

83.49% to 89.64% using the features extracted from the 

whitened data. In this case, the average acceptance rate, i.e. the  

 

percentage of considered examples, ranges from 75% to 85% 

depending on the laboratory. Similarly, the results are ranging 

from 85.00% to 90.63% using features learned from the 

normalized data. In this case, the average rate of acceptance 

examples ranges from 86% to 90%, depending on the labora-

tory, showing that more examples are used in the classification 

than the former one. However, in both cases, our results show 

values that outperform the best published ones [4].  

Concerning the sensitivity to the illumination changes, our 

results seem to be less sensitive to the illumination conditions 

compared to the results obtained in [4]. For instance, based on 

features extracted from localized data, we obtained an average 

classification rate of 91.6%, 90.98% and 91.77% for 

Saarbrucken, Freiburg and Ljubljana laboratories respectively 

under similar illumination conditions. While under different 

illumination conditions, we got an average classification rate 

of 84.5%, 85.1% and 85.84% for the same laboratories. We 

can also note that the lower performance on the Freiburg data, 

which confirms that this collection is the most challenging of 

the whole COLD database as indicated in [4]. However, with 

and without threshold our classification results for this 

laboratory outperforms the best ones obtained by [4]. 

Moreover, we can see that the results obtained using a SVM 

are quite comparable to those obtained using a softmax 

regression. This shows that the DBN computes a linearly 

separable signature. They underline the fact that features 

learned by DBNs approach are more robustness for a SPR task 

than the extraction of ad hoc features based on (gist, 

CENTRIST, SURF, and SIFT) descriptors. 
 

 

I. CONCLUSION AND FUTURE WORK 

The fundamental contributions of this paper are two-fold. 

First, it shows that data normalization significantly affects the 

detection of features, by extracting higher semantic level 

features than whitening, and thus improves the recognition 

rates. Second, it demonstrates that DBNs coupled with tiny 

images can be successfully used in a challenging image 

recognition task, view-based SPR. Our results outperformed 

the best published ones [4] based on more complex techniques 

(use of SIFT detectors followed by a SVM classification). 

According to our classification results, it can be argued that 

first and second order statistics based features are significantly 

better than higher order statistics in terms of classification as 

recently observed by [29]. Also, to recognize a place it seems 

not necessary to correctly classify every image of the place.
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With respect to place recognition not all the images are 

informative: some of them are blurred when the robots turns or 

moves too fast from one place to another, some others show no 

informative details (e.g. when the robot is facing a wall). As 

the proposed system computes the probability of the most 

likely room among all the possible rooms, it offers the way to 

weight each conclusion by a confidence factor associated with 

the probability distribution over all classes. Then, discard the 

most uncertain views thus increasing the recognition score.  

Our proposed model has greatly contributed in simplifying 

the overall classification algorithm. It indeed provides coding 

vectors that can be used directly in a discriminative method. 

So, the present approach obtains scores comparable to the ones 

based on hand-engineered signatures (like GiST or SIFT 

detectors) and more sophisticated classification techniques like 

SVM. As emphasized by [30], it illustrates the fact that 

features extracted by DBNs are more promising for image 

classification than hand-engineered features. 

Different ways can be used in further studies to extend this 

research. A final step of fine-tuning can be introduced using 

back-propagation instead of using rough features as illustrated 

in [30]. However, using the rough features makes the 

algorithm fully incremental avoiding the adaptation to a 

specific domain. The strict separation between the construction 

of the feature space and the classification allows considering 

other classification problems sharing the same feature space. 

The independence of the construction of the feature space has 

another advantage: in the context of autonomous robotics it 

can be seen as a developmental maturation acquired on-line by 

the robot, only once, during an exploration phase of its 

environment. Another open question has not been investigated 

in this work and that remain open despite some interesting 

attempts [7] is the view-based categorization of places. 

Moreover, it could be also interesting to evaluate the 

performance of DBNs on object recognition tasks. 
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