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Abstract: Pressure injuries are increasing worldwide, and there has been no significant improvement
in preventing them. This study is aimed at reviewing and evaluating the studies related to the
prediction model to identify the risks of pressure injuries in adult hospitalized patients using machine
learning algorithms. In addition, it provides evidence that the prediction models identified the
risks of pressure injuries earlier. The systematic review has been utilized to review the articles that
discussed constructing a prediction model of pressure injuries using machine learning in hospitalized
adult patients. The search was conducted in the databases Cumulative Index to Nursing and Allied
Health Literature (CINAHIL), PubMed, Science Direct, the Institute of Electrical and Electronics
Engineers (IEEE), Cochrane, and Google Scholar. The inclusion criteria included studies constructing
a prediction model for adult hospitalized patients. Twenty-seven articles were included in the study.
The defects in the current method of identifying risks of pressure injury led health scientists and
nursing leaders to look for a new methodology that helps identify all risk factors and predict pressure
injury earlier, before the skin changes or harms the patients. The paper critically analyzes the current
prediction models and guides future directions and motivations.

Keywords: pressure injury; prediction model; nursing care; machine learning; inpatient

1. Introduction

“A pressure injury (PI) can range from skin erythema to injured muscle and underlying
bone, depending on the impacted tissue layer’s size and degree” [1]. It is also known as a
pressure ulcer, decubitus ulcer, or bedsore. Depending on the impacted tissue layer’s size
and degree, it can range from skin erythema to injured muscle and underlying bone [1].

A pressure injury is a significant issue in providing healthcare and maintaining patient
safety, with a global prevalence of 12.8% and hospital-acquired pressure injuries (HAPI)
of 8.4% [2]. Moreover, 2.5 million patients in the United States of America (USA) develop
pressure injuries annually in acute care settings [3]. 95% of pressure injuries are preventable,
and the expenditures for measures to prevent pressure injuries are lower than the treatment
expenditures. This led to pressure injuries being a vital quality indicator in healthcare
organizations [4].

Pressure injuries impact patients’ quality of life, morbidity, and mortality and increase
the burden on healthcare expenditures [1]. In addition to the harm that affects the patient
who seeks help and care, it affects patients’ safety negatively and extends the hospitalization
period [5].

Many factors are associated with PIs, like age, gender, hospital length of stay, limited
mobility, disease severity, skin condition, medications, anesthesia, type of surgery, diag-
nosis, and nursing workload [4,6,7]. In addition, patients who suffer from PI complain
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of pain, recurrent infections, hospital admissions, ongoing use of antibiotics, prolonged
hospital stays, and psychosocial impact [8,9].

Stages of pressure injury range from stage I to IV (as illustrated in Figure 1); these
stages are classified based on the harm to the affected body area or the degree of tissue layer
that is affected; stage “I” is defined when the pressure injury affect the tissue perfusion or
circulatory or skin erythema, stage “II” when the pressure injury affect the thickness of the
tissue and cause loss of dermis, stage “III” is defined that the necrosis to the tissue or loss
of the deep layer of tissue, and finally, stage “IV” it means that the pressure injury affects
full thickness of tissue and cause destruction of the tissue layer and subcutaneous fat be
visible [10], as shown in Figure 1.

Many studies identified the risk factors of pressure injury and identified the inter-
ventions and evidence to treat the patient who developed pressure injury. Most of these
studies acknowledged the complexity of pressure injury, which mainly referred to the
multiple factors accompanying the affected patients and the treatment environment. In
other words, hospital-acquired pressure injury results from the dynamics of nonlinear
contributing factors in the care process and patient interaction [11].

A hospital-acquired pressure injury is considered one of the specific nursing indicators,
and the cornerstone to protecting the patient from any complications is to identify the risks
of PI earlier and implement the prevention measures [12].

Risk assessment tools are widely used to identify patients at risk of developing a PI.
These traditional tools (Braden, Norton, and Waterlow Scales) need to identify valuable
risk factors, such as age and hemoglobin [13]. Those tools rely on subjective measures such
as the skin’s condition and the friction range between the skin and beds [4].

Using machine learning (ML) assists in predicting the risk of PI by utilizing vast
amounts of data embedded in the electronic medical record, and it may also help nurses
identify pressure injuries earlier and promote patient safety. However, this approach is still
in its early stages and will be investigated and tested in PIs [14].

It is worth mentioning that this paper reviews the pressure injury risks and predictive
risk factors generated from the prediction models; the other review studies [15–17] did not
investigate the predictive risk factors generated from the prediction models of pressure
injury. The study conducted by Dweekat, Lam, and McGrath [15] presents findings from
30 studies using prediction models of pressure injury; 29 utilized machine learning, and one
used deep learning. The algorithms were DT, LR, SVM, LD, RF, MLP, and KNN. Although
the paper concluded that all studies discussed risk factors that may predict pressure injuries.
However, none of the studies investigated or tracked the impact of changing the status
of the risk factors during the hospitalization period. The study conducted by Jiang et al.
in [16] included 32 studies; only 11 studies related to the ML to detect pressure injury
earlier. This study concludes that the decision tree algorithm was the dominant approach.
The study conducted by Qu et al. in [17] shows findings from 25 studies. It indicates five
ML models, i.e., DT, RF, SVM, NN, and LR, and according to this study, the RF was the best
algorithm to predict pressure injury.



Diagnostics 2023, 13, 2739 3 of 16Diagnostics 2023, 13, x FOR PEER REVIEW 3 of 17 
 

 

 

Figure 1. Stages of pressure sores [18] classify into four main stages: stage I, where the pressure in-

jury affects tissue perfusion or circulatory or skin erythema (a); stage II, where the pressure injury 

affects the thickness of the tissue and causes loss of dermis (b); stage III, where the pressure injury 

causes necrosis to the tissue or loss of the deep layer of tissue (c); and stage IV, where the pressure 

injury affects the full thickness of the tissue and destroys the tissue layer and subcutaneous fat (d). 

This paper presents an Introduction in Section 1; Materials and Methods (research 

design and protocols, search strategy, and inclusion and exclusion criteria) in Section 2; 

Results (the risk factors and biomarkers, predictive risk factors, the prediction models of 

pressure injury with their features, and summaries of the studies that discussed the pre-

diction models) in Section 3; and discussion of the findings in Section 4. Finally, conclu-

sions and motivations for future directions are in Section 5. 

2. Materials and Methods 

The systematic review has been utilized to review the articles that discussed con-

structing a prediction model of pressure injuries using machine learning in hospitalized 

adult patients. Machine learning assists in predicting the risk of pressure injury by utiliz-

ing vast amounts of data embedded in the electronic medical record, and it may also 

help nurses identify pressure injuries earlier and promote patient safety. The methodol-

ogy used in this paper is divided into five sections, namely: (1) research design and pro-

tocols; (2) search strategy; (3) study selection method; (4) inclusion and exclusion crite-

ria; and (5) quality assessment. 

  

Figure 1. Stages of pressure sores [18] classify into four main stages: stage I, where the pressure
injury affects tissue perfusion or circulatory or skin erythema (a); stage II, where the pressure injury
affects the thickness of the tissue and causes loss of dermis (b); stage III, where the pressure injury
causes necrosis to the tissue or loss of the deep layer of tissue (c); and stage IV, where the pressure
injury affects the full thickness of the tissue and destroys the tissue layer and subcutaneous fat (d).

This paper presents an Introduction in Section 1; Materials and Methods (research
design and protocols, search strategy, and inclusion and exclusion criteria) in Section 2;
Results (the risk factors and biomarkers, predictive risk factors, the prediction models of
pressure injury with their features, and summaries of the studies that discussed the predic-
tion models) in Section 3; and discussion of the findings in Section 4. Finally, conclusions
and motivations for future directions are in Section 5.

2. Materials and Methods

The systematic review has been utilized to review the articles that discussed construct-
ing a prediction model of pressure injuries using machine learning in hospitalized adult
patients. Machine learning assists in predicting the risk of pressure injury by utilizing
vast amounts of data embedded in the electronic medical record, and it may also help
nurses identify pressure injuries earlier and promote patient safety. The methodology
used in this paper is divided into five sections, namely: (1) research design and protocols;
(2) search strategy; (3) study selection method; (4) inclusion and exclusion criteria; and
(5) quality assessment.
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2.1. Research Design and Protocols

A systematic review was conducted on pressure injury risk factors and prediction
models and reported according to Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [19].

2.2. Search Strategy

We conducted a systematic review of five different health science databases used
in this research: Cumulative Index to Nursing and Allied Health Literature (CINAHIL),
PubMed, Science Direct, Institute of Electrical and Electronics Engineers (IEEE), Cochrane,
and Google Scholar search.

The keywords utilized in this research were pressure ulcer, pressure injury, pressure
sore, decubitus ulcer, decubitus sore, bedsore, machine learning, and adult hospitalized
patients. Two Boolean operators were used (OR and AND), and the search period included
the studies relevant to the topic and research purpose between 2017 and 2023.

2.3. Study Selection Method

Two independent researchers used the eligibility criteria to evaluate the titles and
abstracts. The entire texts of all possible publications were then obtained, and they were
independently examined. Any disagreement regarding the study’s inclusion was handled
or discussed with a third researcher.

2.4. Inclusion and Exclusion Criteria

This review includes the studies that met the inclusion criteria for this search, including
those using machine learning to predict pressure injuries in inpatients and adult patients.
The language of the literature is English. In addition, the study excluded patients younger
than 14 years, patients with pressure injuries acquired from outside the hospital, and papers
that did not recruit machine learning algorithms to predict pressure injuries.

2.5. Quality Assessment

The quality assessment was performed according to the Joanna Briggs Institute’s (JBI)
critical appraisal checklist by two independent reviewers (E.D.B. and A.Y.O.) to assess
the risk of bias in the included studies [20]. Any disagreement regarding the judge was
handled or discussed with a third researcher. The JBI checklist consists of 11 items; each
item was scored by yes, no, unclear, and not applicable, and the overall score is assessed
for each study and sorted by risk of bias (high, moderate, low) as per the JBI checklist. The
score was categorized as high risk if the total of each item was less than 50, moderate if it
was between 51 and 80, and low if it was between 81 and 100.

3. Results

The existing literature has focused on different aspects of pressure injury and the
prediction model of pressure injury. Overall, 494 studies appeared in the literature search
(485 from the databases and 8 from the Google search), and 19 were removed due to
duplicate records. From those, 426 studies were removed due to the fact that the articles
were not related to the prediction model of pressure injury, and 48 studies were reviewed
to assess the inclusion criteria; out of the 48 studies, two were excluded due to the lack
of reports available, and only 46 articles were screened to assess if the studies matched
the inclusion criteria. Of the 46 studies, 2 were not developing models but only protocols
for review; 7 were for pediatric patients; and 10 were for community-acquired pressure
injuries. Finally, 27 studies were included in the systematic review due to the availability of
free full texts and the complete matching of the inclusion criteria.

The findings of searching and the screening method were explained in the PRISMA
for systematic review, as shown in Figure 2, and the PRISMA was utilized to improve the
accuracy of reviewing studies and be more helpful.
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Figure 2. PRISMA for the systematic review conducted in this research [19].

3.1. Characteristics of Included Studies

The utilization of machine learning to predict pressure injuries was discussed in many
studies described in Table 1, and they concluded that machine learning had a promising
future in detecting pressure injuries. Table 1 summarizes the different study designs and
sample sizes of the studies included in this review that discussed the prediction models for
pressure injuries.

Those studies used different designs, such as prospective (five studies), retrospective
(sixteen studies), experimental (one study), case study (one study), prospective and retro-
spective (one study), and systematic review and meta-analysis (three studies). Also, those
studies utilized various types of data sources, such as databases for electronic medical
records, patient observation, and reviewing medical records. The dataset size of the patient
medical records included in those studies ranged from 149 to 237,397.

The sample size and datasets utilized in the reviewed studies ranged from small
to large data sets; this variation is considered one of the challenges in machine learning.
Furthermore, the data imbalance problems affect the proposed models’ training, as reported
in [21]. The reviewed studies utilized different approaches in the data balances (Random
Oversampling, Synthetic Minority Oversampling, and Undersampling), as illustrated in
Table 1. Most of the reviewed studies included in this paper used Random Oversampling
at 34%, Synthetic Minority Oversampling at 14%, and Undersampling at 7%. Finally, about
45% have not reported the balance method or said it is not applicable.
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Table 1. Characteristics of the included studies.

Reference Design Sample Size Method Balancing

[22] Cohort Retrospective 269 Not Reported
[23] Cohort Prospective 648 Not Reported
[15] Systematic Reviews 168–188,512 Not Applicable
[17] Systematic Reviews 237,397 Not Applicable
[24] Cohort Retrospective 486 Not Reported
[25] Cohort Prospective 12,654 Random Oversampling
[26] Cohort Retrospective 50,851 Synthetic Minority Oversampling and Random Oversampling
[14] Cohort Retrospective 6376 Random Oversampling
[4] Experimental Design 11,838 Under Sampling and Random Oversampling
[16] Systematic Reviews and Meta 125,213 Not Applicable
[27] Cohort Retrospective 100,355 Not Reported
[28] Cohort Retrospective 4652 Random Oversampling
[29] Cohort Retrospective 618 Random Oversampling
[30] Cohort Retrospective 75,353 Random Oversampling
[31] Case-Control 2341 Under Sampling
[32] Cohort Prospective 13,254 Not Reported
[33] Cohort Prospective 194 Not Reported
[34] Cohort Retrospective 18,019 Not Reported
[35] Cohort Prospective 149 Not Reported
[36] Cohort Retrospective 15,310 Random Oversampling
[37] Cohort Retrospective 9644 Not Reported
[38] Cohort Retrospective 5101 Synthetic Minority Oversampling
[39] Cohort Retrospective 18,943 Synthetic Minority Oversampling

[13] Cohort Retrospective and
Prospective 6694 Synthetic Minority Oversampling

[40] Cohort Retrospective 149,006 Random Oversampling
[41] Cohort Retrospective 6742 Random Oversampling
[42] Cohort Retrospective 206,540 Not Reported

Different studies discussed the use of machine learning in constructing a prediction
model for pressure injury; 27 studies were reviewed in the literature in terms of using
machine learning to predict pressure injury [4,9,11,13,14,17,20–23,26,27,29–32,34–36,43].
Those studies focused on different aspects of pressure injury and the department or specialty
when the patient developed pressure injury, as Ji-Yu et al. [32] developed a prediction
model for patients undergoing cardiovascular operations, and the model predicts pressure
injury based on the clinical data; Walther et al. [36] studied the power of risk factors
related to pressure injury by utilizing machine learning technology; the data were collected
retrospectively from 2014 to 2018. Most studies were conducted to track the intensive care
unit patients (14 out of 27).

Most of the data sets utilized in the reviewed papers are generated from the electronic
medical records conducted in that hospital (20 studies), followed by a national database
(3 studies), an international database (1 study), and systematic reviews (3 studies).

The sampling of the reviewed studies included in the paper is free of limitations
related to the ethnic background, socioeconomic status, and gender of the patients that
participated in the studies. For the age group, most of the studies determined the adult age
for the participants at 70% of the included studies, followed by free of limitations (adult
and pediatric) at 19%, not reported in the manuscript at 11%, and elderly patients above
65 years at 4%. Finally, most reviewed papers determined the pressure injury rate for the
patients admitted to the intensive care units to be 52%.

3.2. Risk of Bias Assessment

One item in the JBI checklist was judged low risk; others ranged from high to low risk.
However, they were either not included in the manuscripts or had inadequate information,
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and there were certain items where the risk of bias was unclear. Figure 3 illustrates the risk
of bias across all items on the JBI checklist.
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Unclear, and NA). High Risk (Less than 50%, Moderate 51–80%, and Low 81–100%). Color coding:
Red (High Risk), Orange (Moderate Risk), Green (Low Risk), and Yellow (Unclear/Not Applicable).

3.3. Risk Factors and Biomarkers of Pressure Injury

The studies conducted to identify the risk factors and biomarkers of pressure injury
were in six articles [8,14,43–46] summarized in Table 2. The incidence and prevalence of
pressure injuries were discussed worldwide in many studies, such as [47–49]. A study was
conducted in 2019 by Qaddumi et al. [48] to assess the incidence rate of pressure injury and
its related variables through a prospective design for 140 admitted adult patients to the
ICU and assessing them by the Braden scale to identify the risk of pressure injuries during
a stay at the ICU. The findings of the study were that 30% of patients developed pressure
injuries; for other variables, the frequency of bed repositioning and folly’s catheter are not
significant but protective factors for pressure injury in ICU patients. The limitations faced
in this study are the small sample size and the data collection depending on the nurses in
those hospitals.

Various risk factors affect pressure injuries, some of which are predictor variables [43].
Those factors may include but are not limited to age, gender, body mass index, length of
stay, medications, vital signs, anesthesia, the Braden scale, the Braden subscale (sensory
perception, moisture, activity, mobility, nutrition, and friction and shear), and diagnoses
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such as cancer, cardiovascular disease, diabetes mellitus, renal failure, and respiratory dis-
ease [14,43]. Table 2 summarizes the risk factors and biomarkers identified in those articles.

Table 2. Risk factors and biomarkers of pressure injury.

Type of Variables and References Summary of Variables

Risk Factors
[8,14,43–46]

Age.
Gender.
Body mass index.
Length of stay.
Medications.
Vital signs.
Anesthesia.
Braden scale.
Braden subscale (sensory perception, moisture, activity,
mobility, nutrition, and friction and shear).
Diagnoses include cancer, cardiovascular, diabetes
mellitus, renal failure, and respiratory.

Biomarkers
[8,44–46]

FABP4: Fatty Acid-Binding Protein.
IMAT: intramuscular adipose tissue.
IL-1α Interleukin-1 Alpha.
SEM: sub-epidermal moisture.
CK: creatine kinase.
H-FAB: heart-type fatty acid binding protein.
Mb: myoglobin.
Alb: Albumin.
Hb: Hemoglobin.
CRP: C-Reactive Protein.
IL-15: Interleukin-15.
TNF-αTumor Necrosis Factor Receptor—Alpha.
IFN-α: Interferons—Alpha.
GM-CSF: Granulocyte-macrophage
colony-stimulating factor.

The visual skin assessment (VSA) to predict pressure injury relies on assessment
tools that cannot be reliable prediction methods [8], and these methods are limited and
problematic because pressure injury develops from the deep tissue; it cannot be noticed
until it reaches the skin layer [44].

Objective measures to predict pressure injury called biomarkers, defined as the normal
reaction to physiological skin irritation [8], have significant potential to identify the risks of
pressure injury through identifying inflammation activated by the inflammation biomarkers
such as keratinocytes before the skin changes and skin injury [46].

The research of Schwartz et al. [45] identifies the correlation between pressure injury
and biomarkers for the patient after spinal cord injury. It was shown that the circulatory
biomarkers and muscle-based biomarkers could identify patients with a high risk for
recurrent pressure injury, which found that muscle quality is an effective biomarker and
the biomarkers of Fatty Acid-Binding Protein (FABP4) circulator inflammatory factor had a
significant level for recurrent pressure injury after spinal cord injury.

The potential of biomarkers for the early detection of pressure injuries was assessed
by [44,46]. Those studies focus on inflammatory biomarkers. The first study [44] investi-
gates IL-1a (total protein) with sub-epidermal moisture (SEM) and finds a weak correlation
between Interleukin-1 Alpha (IL-1a) and SEM [44]. In contrast, the other research [46]
explores the creatine kinase (CK), heart-type fatty acid binding protein (H-FAB), and myo-
globin (Mb) for the control and spinal cord injury (SCI) groups. It concludes that the two
groups (control and SCI) have a positive relationship between the CK and heart-type fatty
acid binding protein (H-FAB) and between the Mb and H-FAB. Only H-Fab and CRP had
higher concentrations than other subjects [46].
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A systematic review study conducted by Wang et al. in [8] discusses the biomarkers
that may detect pressure injury and the role of the biomarkers in early detection, which
involved Alb, Waterlow score, hemoglobin (Hb), C-Reactive Protein (CRP), age, gender,
H-FABP, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-15, TNF-α, and
Interferons—Alpha (IFN-a) in urine). The study [8] concludes that the combination of
gender, age, Hb, albumin (Alb), and CRP is the most significant biomarker [8].

3.4. Predictive Risk Factors and Biomarkers of Pressure Injury

The pressure injury risk factors are vast, and the staff cannot predict all cases due to
the unique patient differences [30]. In addition, the pressure injury harms the patients,
affecting outcomes and treatment plans, which may cause significant harm in severe cases
before the staff detects the pressure injury [14]. So, the prediction model of pressure injury
was studied to assess the applicability and benefits of identifying the pressure injury earlier
and alarming the system with the risk of pressure injury for the admitted patients due to
certain factors and biomarkers [30].

According to Sir William Osler [50], “Medicine is a science of uncertainty and an
art of probability”. This is the evolution of a new approach to medicine, indicating the
importance of machine learning in the healthcare industry and forming the promising
future of artificial intelligence [50].

The utilization of machine learning to construct a prediction model for pressure injury
differs in the predictive risk factors that resulted from the prediction models; the subsequent
studies present the predictive risk factors that resulted from the prediction models.

The Xu et al. study [29] found that the predictive risk factors were the reason for
admission, clinical laboratory results, patients’ demographics, medical history, and Braden
scale. Another study by Shui et al. [31] found that the predictive risk factors were patients’
demographics, medications, diagnosis, ventilation, and incidence of HAPI.

Also, the Cramer et al. study [26] found that the predictive risk factors were age,
gender, weight, mean arterial pressure, consciousness, medications, diagnoses, laboratory,
and incidence of PI. Another study by Alderden et al. [14] found that the predictive
risk factors were vasopressor, temperature, blood pressure, sedation, severity of illness,
oxygenation, and confusion level.

Moreover, a study by Tang et al. [23] found that the predictive risk factors were age,
gender, weight, body mass index, albumin, Hb, and comorbidities. Another study by
Choi et al. [33] found that the predictive risk factors were oral mucosal, endotracheal tube
(ETT), vasopressor, albumin, hematocrit (HCT), and steroids. A study by Anderson et al. [39]
examined age, gender, diagnoses, length of stay, comorbidities, the severity of illness, and
the Braden scale.

Furthermore, a study by Nakagami et al. [30] found that the predictive risk factors
were age, gender, diagnoses, diet, pain, paralysis, level of consciousness, skin condition,
comorbidities, the severity of illness, and department type. Another study by Sun et al. [24]
found that the predictive risk factors were age, gender, diagnosis, cancer, anti-cancer ther-
apy, Waterlow score, laboratory results, medications, length of stay, mechanical ventilation,
acute physiology and chronic health evaluation (APACHE) II score, and blood purification.
A study by Ladios-Martin [13] found that the predictive risk factors were gender, age, place
of birth, hospital, diagnosis, and APACHE II score.

Deschepper et al. [32] found that the predictive risk factors were age, gender, diagnosis,
Braden score, body mass index (BMI), heart rate, mean arterial pressure, temperature,
laboratory results, and immunocompromised status. Table 3 summarizes the predictive
risk factors identified in those articles.

The common risk factors investigated in most of the studies were diseases and comor-
bidities, laboratory results, Braden scale, use of medications, age, vital signs, gender, body
mass index, length of stay, duration of surgery, and critical conditions, such as the following
factors that correlate with pressure injuries; age > 74 years, female ASA ≥ 3, BMI < 23,
Braden score, anemia, respiratory disease, and HTN were studied by Aloweni et al. [22];
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High FBS, vasoactive drugs, and the duration of surgeries were studied by Tang, Li, and
Xu [23]; the critical condition and high Barden were studied by Sun et al. [24]; length of the
patient’s stay was studied by Šín et al. [28]; prolonged length of stay in the ICU, DM, male
gender, BMI, and maximum lactate were studied by Deschepper et al. [32]; mechanical
ventilation, anesthesia, and age were studied by Walther et al. [40].

Table 3. Predictive risk factors for pressure injury.

References Predictive Risk Factors

[22] Age, female, ASA score, body mass index, Braden score, anemia, respiratory disease, and hypertension.
[23] Braden score, preoperative fasting blood glucose level, emergency surgery, and types of vasoactive drugs.

[15]

Age, Ethnic, Race, Sex, Admission Source, ASA, LOS at ER, ICU stay, Surgeries, Palliative Orders, history of
admissions, need to transitional Unit, steroids, Comorbidity, Depression, PI on admission, Diabetes, Renal
Failure, Sepsis, Stroke History, Systolic BP, Diastolic BP, BMIGCS, Weight loss, Saturation, Temperature, Patient
Refusal to Change Position, and Skin abnormality on admission, Albumin, BUN, CRP, Creatinine, Hb, MAP,
Lactate sodium, Opioids, Steroid Use, Stimuli Anesthesia, Stimuli Paralytics, Stimuli Sedation, Stimuli
Tracheostomy, Vasopressor, Artificial Air, Face Mask, Nasal Cannula, Noninvasive Ventilation Pharyngeal,
Room Air, Ventilator, and Feeding Tube.

[17] Three hundred twenty-four features were discussed among the 25 studies.

[24] Age, gender, diagnosis, cancer, anti-cancer therapy, Waterlow score, laboratory results, medications, length of
stay, mechanical ventilation, APACHE score, and blood purification.

[25] Age, gender, weight, diabetes, vasopressor, isolation, endotracheal tube, ventilator episode, Braden score, and
ventilator days.

[26] Age, gender, admission weight, mean arterial pressure, level of consciousness, medications, diagnoses, and
laboratory results.

[14] Vasopressor medications, temperature, blood pressure, sedation, the severity of illness, oxygenation, and
confusion level.

[4] Sex, age, length of hospital stays, mobility, frictional/shear forces, adrenaline infusion, cardiovascular diseases,
disease severity, and nursing workload.

[16] Demographic factors (Age, BMI, Activity), Treatment Factors (Anesthesia, drugs, Surgeries Duration), and
Others (LOS, Hospital Costs).

[27] Patient history (age and gender), Vital signs (heart rate and blood pressure), lab tests (Hemoglobin and
Creatinine levels), LOS, procedures, and medications.

[28] Age, gender, ethnicity, total intake, total output, length of hospital stays, arterial oxygen saturation, systolic
arterial blood pressure, height, daily weight, and glucose (whole blood).

[29] Reason for admission, clinical laboratory results, patients’ demographics, medical history, and Braden scale.

[30] Age, gender, diagnoses, diet, pain, paralysis, level of consciousness, skin condition, comorbidities, severity of
illness, and department type.

[31] Age, movement, sensory perception, response, moisture, perfusion, use of medical devices, compulsive position,
hypoalbuminemia, HAPI, and surgery.

[32] Age, gender, diagnosis, Braden score, BMI, heart rate, mean arterial pressure, temperature, laboratory results,
and immunocompromised status.

[33] Oral mucosal, endotracheal tube, vasopressor, albumin, hematocrit, and steroids.
[34] Age, body mass index, lactate serum, Braden score, vasopressor use, and antifungal medications.

[35] Duration of surgery, patient weight, duration of the cardiopulmonary bypass procedure, patient age, and
disease category.

[36] GCS, consciousness, gait/transfer, activity, spinal cord injury, albumin, hemoglobin, blood urea nitrogen,
chloride, and creatine.

[37] Albumin, RDW, SAPS-II, CHF, BMI, Glu, Friction/shear score, and Mobility score.
[38] Laboratory tests, Nursing skin assessment, Surgical time, Vasopressor infusions, and Braden Scale scores.
[39] Age, gender, diagnoses, length of stay, comorbidities, severity of illness, and Braden scale.
[13] Gender, age, place of birth, hospital, diagnosis, and APACHE II score.

[40] Length of anesthesia, wards involved in care, admission reasons, ICU (with/without ventilation), age, sex,
and comorbidities.

[41] Bed Positions, laboratory tests (Creatinine, lactate, pre-albumin, and albumin), Clinical features, admission
weight, BMI, activity, and Braden assessment.

[42] History of PIs, lower care needs mainly mobility, toileting, complex health care, and medication assistance.
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3.5. Machine Learning Prediction Model of Pressure Injury

This paper reviewed 27 studies, which included 24 studies that construct prediction mod-
els of pressure injury [13,14,16,17,20–22,24–38], and 3 out of those 27 were systematic reviews.

Those studies recruit many types of machine learning algorithms; some of those
studies recruit one kind of algorithm, and some of the studies recruit more than one
type of algorithm, as described in Table 4; these algorithms were Neural Network (NN),
Decision Tree (DT), Regression Tree (RT), Linear Discriminants (LD), Super Vector Machine
(SVM), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbor (KNN), Gradient
Boosting Machine (GBM), Explainable Boosting Machine (EBM), Bayesian Networks (BN),
Extreme Gradient Boosting (XGBoost), Gradient Boosting (GB), and Bayesian Additive
Regression Trees (BART).

Different approaches evaluated the machine learning prediction models of pressure
injury, and most of those models utilized the Area Under the Curve (AUC) in addition to
the other performance metrics such as accuracy, sensitivity, specificity, precision, and recall.
Finally, not all studies report all the attributes of the performance metrics.

Table 4. Detail results of machine learning predictive model studies.

Reference Algorithm Training
%

Testing
%

Accuracy
%

Sensitivity
%

Specificity
%

Precision—
(PPV)

Recall—
(NPV) AUC

[22] LR 70 30 NR 40 70.3–94.7 0.73 0.08 NR

[23] LR NR NR NR 0.63 0.86 NR NR 0.74

[15] DT, LR, SVM, LD,
RF, MLP, KNN 64–80 20–50 NR NR NR NR NR NR

[17] DT NR NR 0.721 0.793 0.721 NR NR NR

[24] LR NR NR 83.4 0.66–0.81 0.78–0.96 NR NR 0.82–0.95

[25] LR 67 33 0.81 0.65 0.69 0.211 0.956 0.737

[26] LR, SVM, RF,
GBM, NN 80 20 NR NR NR 0.12–0.18 0.08–0.70 NR

[14] RF 67 33 NR NR NR NR NR 0.79

[4] DT, LR, RF NR NR NR 0.69–1 0.721–0.99 0.79–0.99 0.82–1 0.876–1

[16] DT, LR, SVM, NN,
RF, Elastic Net 67–90 10–33 63–90 47.8–84.8 70.3–94.7 0.37–0.67 0.61–0.95 NR

[27] EBM, DT, LR NR NR NR NR NR NR NR 0.60–0.79

[28] LR, KNN, RF,
BN, SVM NR NR 0.84–0.96 NR NR 0.75–0.94 0.59–0.91 0.77–0.94

[29] LR, DT, RF 70 30 0.68–0.75 0.39–0.61 0.80–0.91 0.59–0.66 0.74–0.82 0.72–0.82

[30] LR, RF, SVM,
XGBoost 70 30 NR 0.66–0.79 0.69–0.81 0.01–0.02 0.998 0.76–0.82

[31] LR 83 17 NR NR NR NR NR 0.87–0.94

[32] RF 90 10 0.830 NR NR NR NR 0.785–
0.792

[33] Gaussian Naïve Bayes,
LR 80 20 A hospital-

acquired 0.60–0.85 0.76–0.89 0.86 0.91 0.68–0.82

[34] Fine-Gray Model 70 30 NR NR NR NR NR 0.56–0.92

[35] XGBoost NR NR 0.80 0.81 1 1 0.76 0.50–1

[36] LR, SVM, NN, RF 80 20 0.78–0.91 0.77–0.87 0.79–0.88 NR NR 0.80–0.94

[37] LR 67 33 NR 0.69 0.72 NR NR 0.77

[38] NN, LR, RF,
GB, Adaboost 80 20 NR NR NR NR NR 0.76–0.81

[39] LR, RF, NN, DL 70 30 0.86–0.99 0.67–1 0.91–0.99 0.82–0.98 0.88–1 0.71–0.72

[13] LR, SVM, RF,
DT, NN 70 30 0.65–0.68 0.90 0.74 0.08–0.01 0.99–1 0.89

[40] LR, RF, BART 80 20 0.52–0.55 0.04–0.10 1 0.39–0.58 0.98–0.99 0.89–0.90

[41] LR, KNN, NB,
DT, RF 70 30 0.90–0.97 0.86–0.98 0.87–0.97 0.81–0.96 0.92–0.99 0.90–0.97

[42] Fine-Gray Model 80 20 NR NR NR NR NR 0.72–0.75

PPV—Positive Predictive Value; NPV—Negative Predictive Value; AUC—Area Under Curve; NR—Not Reported.



Diagnostics 2023, 13, 2739 12 of 16

4. Discussion

This section will discuss the results obtained from all reviewed papers (risk factors and
biomarkers of pressure injury, characteristics of included studies, and prediction models
of pressure injury) and the research implications, limitations, and recommendations for
future directions.

4.1. Discussion of Results

We examined 494 journal articles and picked 27 that offered information about the
machine learning prediction model of pressure injury utilized in hospital settings to identify
the pressure injury earlier in our systematic review. Furthermore, the studies discussed
using machine learning to predict pressure injuries in adult inpatients. In total, 27 articles
were included in the review, and the following themes were considered: risk factors and
biomarkers of pressure injury; characteristics of the included studies; and prediction models
of pressure injury.

We notice that no studies look for all risk factors and biomarkers of pressure injury.
The reviewed studies utilized different design approaches to predict pressure injuries. In
addition, the prediction model of pressure injury provides clear evidence that machine
learning algorithms will assist healthcare providers by identifying the pressure injury
earlier and with a high accuracy rate. We offer a complete overview of the reviewed articles
on the prediction model of pressure injury utilized in hospital settings.

Utilizing the balance methods will improve the prediction model results [51]. The
studies conducted in [28,36] showed excellent performance of the proposed predictive
models due to the use of balancing methods. Moreover, utilizing approaches to overfitting
in the development of new models is highly recommended, especially for models with
low performance.

4.1.1. Characteristics of Included Studies

In this review, we focus on the studies that use the machine learning prediction model
of pressure injury and those that utilize different research designs to predict pressure injury.
Most of those studies utilized retrospective studies that enabled the researchers to obtain
the data from data warehouses (14 out of 27 studies). It is worth mentioning that there
is one study that utilized the experimental design to construct the prediction model of
pressure injury. This approach matches a content analysis study by Kamiri and Mariga [52]
to discuss the research methodology in machine learning, which revealed that all studies
included in the analysis used machine learning in experimental designs.

4.1.2. Risk Factors and Biomarkers of Pressure Injury

Pressure injury (also called pressure ulcers) has many risk factors and biomarkers that
may affect patients and potentially affect the incidence of pressure injury. These factors are
not standardized for all patient categories. The factors that affect pressure injury identified
in the prediction model studies included in this review and those identified as predictive
factors. This means that those factors are significant and correlated with a pressure injury.

The most prevalent factors among the studies were age, gender, body mass index,
length of stay, medications, vital signs, anesthesia, Braden scale, Braden subscale (sensory
perception, moisture, activity, mobility, nutrition, and friction and shear), diagnoses include
cancer, cardiovascular, diabetes mellitus, renal failure, respiratory, and diagnostic tests
include FABP4, IMAT, IL-1α, SEM, CK, H-FAB, Mb, Alb, Hb, CRP, IL-15, TNF-α, IFN-α,
and GM-CSF [8,14,39–42]. These findings are relevant to risk factors identified in other
studies conducted to assess the risk factors of pressure injury [53,54].

4.1.3. Machine Learning Prediction Models of Pressure Injury

The main objective of this review is to identify the studies that utilized machine
learning in the prediction model of pressure injury and to summarize the approaches and
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algorithms used in these studies. In addition to summarizing those models’ performance
metrics and evaluation methods and the results obtained from the prediction models.

All studies rely on data available in the data warehouses of electronic medical records.
Furthermore, most studies do not describe the preprocessing of the data or data cleaning.
Most studies did not mention the selection process of algorithms, and LR was the most
frequent machine learning algorithm, followed by RF, SVM, NN, and DT. These results
match the study by Kamiri and Mariga [52].

Moreover, all studies concluded that the prediction model successfully predicts pres-
sure injury in the ICU, CCU, open wards, and hospital settings for admitted adult patients
based on the clinical data in the electronic medical record [13,14,16,17,20–22,24–38]. A pres-
sure injury is considered a significant issue in the healthcare industry and affects patient
safety and quality of care. So, the prediction model provides a promising tool for healthcare
providers, mainly nurses, to predict pressure injuries earlier.

The hospital management needs to provide their hospitals with models to assist their
staff with prediction models to detect pressure injuries earlier. The prevalence of pressure
injuries in hospitals is still high, and the health system and policymakers may need to
recruit new methods that identify the risks of pressure injuries. Furthermore, the prediction
model of pressure injury needs to be implemented on a different level and provided to
healthcare facilities with this model that helps the healthcare providers identify the risk of
pressure injuries, or the patient may develop pressure injuries during the hospital stay.

4.2. Research Implication

The prevalence of pressure injuries in hospitals is still high, and the health system
and policymakers may need to recruit new methods that identify the risks of pressure
injuries. Furthermore, the prediction model of pressure injury needs to be implemented
on a different level and provided to healthcare facilities with this model that helps the
healthcare providers identify the risk of pressure injuries, or the patient may develop
pressure injuries during the hospital stay.

4.3. Limitations of the Research

The systematic review includes articles from the most reputable five databases and a
Google Scholar search, which may consist of only some relevant articles from all databases.
Also, the research reviewed the articles in English only.

4.4. Recommendation

The findings of this review suggest that nurses, physicians, physiotherapists, and
dieticians may benefit from models that predict pressure injuries in hospital settings; these
models can provide a valid tool in addition to implementing evidence-based practices that
will mitigate and prevent pressure injuries. The hospital management needs to provide
their hospitals with models to assist their staff with prediction models to detect pressure
injuries earlier.

Finally, the literature review from the previous work on the prediction model of
pressure injury shows that the prediction model predicts which patients may develop
pressure injury based on the risk factors that belong to the patients but does not predict
when the patients may acquire the pressure injury. Furthermore, the prediction model
recommends tracking changes in the patient’s status, condition, or biomarkers resulting
in pressure injury to identify whose patients may acquire the pressure injury during
hospitalization. Also, one of the gaps in the previous works is that no one has studied,
investigated, or mentioned accreditation status as a variable or feature in the prediction
model developed in those studies. The accreditation status means an accreditation body or
agency acknowledges the hospital’s implementation of the accreditation standards [55].
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5. Conclusions

The number of ML approaches utilized in the reviewed studies was 21; the top five
were logistic regression, random forest, decision tree, support vector machine, and neural
network. Logistic regression was the dominant approach with 28% of all used models,
followed by random forest with 20%, decision tree with 11%, support vector machine with
9%, and neural network with 7%. This means that 75% of the reviewed studies used the top
five models, whereas 25% used other ML models. It is worth mentioning that, according to
the findings, logistic regression and random forest were the best models to predict pressure
injury. The common risk factors were investigated in most of the studies, and we found
that those factors are diseases and comorbidities (which present (15%) of the predictive
risk factors), laboratory results (12%), Braden scale (11%), use of medications (10%), age
(8%), vital signs (7%), gender (6%), body mass index (3%), length of stay (3%), duration
of surgery (3%), critical condition (3%), and other factors that present (19%) of the risk
factors. The reviewed papers discussed different domains related to the prediction models
of pressure injury, including nursing care, the impact of nursing care on pressure injury,
pressure injury, risk factors of pressure injury, biomarkers of pressure injury, machine
learning algorithms, and the prediction model of pressure injury. However, although the
results obtained from these studies are promising, none of them successfully utilized a
fused multi-channel prediction model of pressure injury. We recommend including all
pressure injury biomarkers, risk factors, and organizational-related factors in future studies.

Author Contributions: Conceptualization, E.D.B. and A.Y.O.; methodology, E.D.B., A.Y.O., M.A. and
M.O.; formal analysis, E.D.B., A.Y.O., M.A. and M.O.; investigation, E.D.B. and A.Y.O.; resources,
E.D.B. and A.Y.O.; data curation, E.D.B.; writing—original draft preparation, E.D.B.; writing—review
and editing, E.D.B., A.Y.O., M.A. and M.O.; supervision, A.Y.O., M.A. and M.O.; project admin-
istration, A.Y.O., M.A. and M.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hoogendoorn, I.; Reenalda, J.; Koopman, B.F.; Rietman, J.S. The effect of pressure and shear on tissue viability of human skin in

relation to the development of pressure ulcers: A systematic review. J. Tissue Viability 2017, 26, 157–171. [CrossRef] [PubMed]
2. Siotos, C.; Bonett, A.M.; Damoulakis, G.; Becerra, A.Z.; Kokosis, G.; Hood, K.; Dorafshar, A.H.; Shenaq, D.S. Burden of Pressure

Injuries: Findings from the Global Burden of Disease Study. Eplasty 2022, 22, e19.
3. Padula, W.V.; Delarmente, B.A. The national cost of hospital-acquired pressure injuries in the United States. Int. Wound J. 2019, 16,

634–640. [CrossRef] [PubMed]
4. Hu, Y.-H.; Lee, Y.-L.; Kang, M.-F.; Lee, P.-J. Constructing inpatient pressure injury prediction models using machine learning

techniques. CIN Comput. Inform. Nurs. 2020, 38, 415–423. [CrossRef] [PubMed]
5. Triantafyllou, C.; Chorianopoulou, E.; Kourkouni, E.; Zaoutis, T.E.; Kourlaba, G. Prevalence, incidence, length of stay and cost

of healthcare-acquired pressure ulcers in pediatric populations: A systematic review and meta-analysis. Int. J. Nurs. Stud.
2021, 115, 103843. [CrossRef]

6. Dunyach-Remy, C.; Salipante, F.; Lavigne, J.-P.; Brunaud, M.; Demattei, C.; Yahiaoui-Martinez, A.; Bastide, S.; Palayer, C.; Sotto,
A.; Gélis, A. Pressure ulcers microbiota dynamics and wound evolution. Sci. Rep. 2021, 11, 18506. [CrossRef]

7. Rondinelli, J.; Zuniga, S.; Kipnis, P.; Kawar, L.N.; Liu, V.; Escobar, G.J. Hospital-acquired pressure injury: Risk-adjusted
comparisons in an integrated healthcare delivery system. Nurs. Res. 2018, 67, 16. [CrossRef]

8. Wang, N.; Lv, L.; Yan, F.; Ma, Y.; Miao, L.; Chung, L.Y.F.; Han, L. Biomarkers for the early detection of pressure injury: A systematic
review and meta-analysis. J. Tissue Viability 2022, 31, 259–267. [CrossRef]

9. Yang, K.-L.; Chen, L.; Kang, Y.-Y.; Xing, L.-N.; Li, H.-L.; Cheng, P.; Song, Z.-H. Identification of risk factors of developing pressure
injuries among immobile patient, and a risk prediction model establishment: A protocol for systematic review. Medicine 2020,
99, e23640. [CrossRef]

https://doi.org/10.1016/j.jtv.2017.04.003
https://www.ncbi.nlm.nih.gov/pubmed/28457615
https://doi.org/10.1111/iwj.13071
https://www.ncbi.nlm.nih.gov/pubmed/30693644
https://doi.org/10.1097/CIN.0000000000000604
https://www.ncbi.nlm.nih.gov/pubmed/32205474
https://doi.org/10.1016/j.ijnurstu.2020.103843
https://doi.org/10.1038/s41598-021-98073-x
https://doi.org/10.1097/NNR.0000000000000258
https://doi.org/10.1016/j.jtv.2022.02.005
https://doi.org/10.1097/MD.0000000000023640


Diagnostics 2023, 13, 2739 15 of 16

10. Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J. Pressure
ulcer/injury classification today: An international perspective. J. Tissue Viability 2020, 29, 197–203. [CrossRef]

11. Tschannen, D.; Anderson, C. The pressure injury predictive model: A framework for hospital-acquired pressure injuries. J. Clin.
Nurs. 2020, 29, 1398–1421. [CrossRef] [PubMed]

12. Gunningberg, L.; Sedin, I.-M.; Andersson, S.; Pingel, R. Pressure mapping to prevent pressure ulcers in a hospital setting: A
pragmatic randomised controlled trial. Int. J. Nurs. Stud. 2017, 72, 53–59. [CrossRef]

13. Ladios-Martin, M.; Fernández-de-Maya, J.; Ballesta-López, F.-J.; Belso-Garzas, A.; Mas-Asencio, M.; Cabañero-Martínez, M.J.
Predictive modeling of pressure injury risk in patients admitted to an intensive care unit. Am. J. Crit. Care 2020, 29, e70–e80.
[CrossRef] [PubMed]

14. Alderden, J.; Pepper, G.A.; Wilson, A.; Whitney, J.D.; Richardson, S.; Butcher, R.; Jo, Y.; Cummins, M.R. Predicting pressure injury
in critical care patients: A machine-learning model. Am. J. Crit. Care 2018, 27, 461–468. [CrossRef]

15. Dweekat, O.Y.; Lam, S.S.; McGrath, L. Machine Learning Techniques, Applications, and Potential Future Opportunities in
Pressure Injuries (Bedsores) Management: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 796. [CrossRef]
[PubMed]

16. Jiang, M.; Ma, Y.; Guo, S.; Jin, L.; Lv, L.; Han, L.; An, N. Using machine learning technologies in pressure injury management:
Systematic review. JMIR Med. Inform. 2021, 9, e25704. [CrossRef]

17. Qu, C.; Luo, W.; Zeng, Z.; Lin, X.; Gong, X.; Wang, X.; Zhang, Y.; Li, Y. The predictive effect of different machine learning
algorithms for pressure injuries in hospitalized patients: A network meta-analyses. Heliyon 2022, 8, e11361. [CrossRef]

18. Healthwise Staff: Stages of Pressure Injuries. 2023. Available online: https://lanterman.ca.networkofcare.org/dd/library/article.
aspx?hwid=zm2442 (accessed on 16 April 2023).

19. Cohen, J.F.; Deeks, J.J.; Hooft, L.; Salameh, J.-P.; Korevaar, D.A.; Gatsonis, C.; Hopewell, S.; Hunt, H.A.; Hyde, C.J.; Leeflang, M.M.
Preferred reporting items for journal and conference abstracts of systematic reviews and meta-analyses of diagnostic test accuracy
studies (PRISMA-DTA for Abstracts): Checklist, explanation, and elaboration. BMJ 2021, 372, n265. [CrossRef]

20. Siddiqui, A.A.; Alshammary, F.; Mulla, M.; Al-Zubaidi, S.M.; Afroze, E.; Amin, J.; Amin, S.; Shaikh, S.; Madfa, A.A.; Alam, M.K.
Prevalence of dental caries in Pakistan: A systematic review and meta-analysis. BMC Oral Health 2021, 21, 450. [CrossRef]

21. Kochkarev, A.; Khvostikov, A.; Krylov, A.; Korshunov, D.; Boguslavskiy, M. Data Balancing Method for Training Segmentation Neural
Networks; CEUR Workshop Proceedings: Aachen, Germany, 2020.

22. Aloweni, F.; Ang, S.Y.; Fook-Chong, S.; Agus, N.; Yong, P.; Goh, M.M.; Tucker-Kellogg, L.; Soh, R.C. A prediction tool for
hospital-acquired pressure ulcers among surgical patients: Surgical pressure ulcer risk score. Int. Wound J. 2019, 16, 164–175.
[CrossRef]

23. Tang, Z.; Li, N.; Xu, J. Construction of a Risk Prediction Model for Intraoperative Pressure Injuries: A Prospective, Observational
Study. J. PeriAnesthesia Nurs. 2021, 36, 473–479. [CrossRef] [PubMed]

24. Sun, Z.-W.; Guo, M.-R.; Yang, L.-Z.; Chen, Z.-J.; Zhang, Z.-Q. Risk Factor Analysis and Risk Prediction Model Construction of
Pressure Injury in Critically Ill Patients with Cancer: A Retrospective Cohort Study in China. Med. Sci. Monit. Int. Med. J. Exp.
Clin. Res. 2020, 26, e926661–e926669. [CrossRef] [PubMed]

25. Hyun, S.; Moffatt-Bruce, S.; Cooper, C.; Hixon, B.; Kaewprag, P. Prediction model for hospital-acquired pressure ulcer develop-
ment: New paradigm in intensive care units. J. Med. Internet Res. 2019, 21, e13785.

26. Cramer, E.M.; Seneviratne, M.G.; Sharifi, H.; Ozturk, A.; Hernandez-Boussard, T. Predicting the incidence of pressure ulcers in
the intensive care unit using machine learning. eGEMs 2019, 7, 49. [CrossRef] [PubMed]

27. James, A. Machine Learning Risk Assessment Model for Hospital Acquired Pressure Injuries. Master’s Thesis, University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2021.
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development among hospitalised patients. Pielęgniarstwo Chir. I Angiol. Surg. Vasc. Nurs. 2019, 12, 152–158.

44. McEvoy, N.; Patton, D.; Curley, G.; Boland, F.; Kearney, C.; Hogan, G.; Keogh, A.; Clarke, J.; Moore, Z. Biomarkers for the early
detection of pressure ulcers in the intensive care setting: A comparison between sub-epidermal moisture measurements and
interleukin-1α. Int. Wound J. 2022, 20, 831–844. [CrossRef] [PubMed]

45. Schwartz, K.; Henzel, M.K.; Ann Richmond, M.; Zindle, J.K.; Seton, J.M.; Lemmer, D.P.; Alvarado, N.; Bogie, K.M. Biomarkers for
recurrent pressure injury risk in persons with spinal cord injury. J. Spinal Cord Med. 2020, 43, 696–703. [CrossRef] [PubMed]

46. Bader, D.; Oomens, C. The potential of biomarkers in the early detection of pressure ulcers. In Science and Practice of Pressure Ulcer
Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–15.

47. Anthony, D.; Alosaimi, D.; Shiferaw, W.S.; Korsah, K.; Safari, R. Prevalence of pressure ulcers in Africa: A systematic review and
meta-analysis. J. Tissue Viability 2021, 30, 137–145. [CrossRef] [PubMed]

48. Qaddumi, J.; Almahmoud, O.; Khurasani, A.; Alkhawaldeh, A.; Khraisat, O. Incidence of pressure ulcers and its related variables
among critically ill adult patients in Palestine. Palest. Med. Pharm. J. 2019, 4, 55–61. [CrossRef]

49. Tariq, G.; Hamed, J.; George, B.; Cruz, S.; Jose, J. Pressure ulcer prevalence and prevention rates in Abu Dhabi: An update. J.
Wound Care 2019, 28, S4–S11. [CrossRef]

50. Bhardwaj, A. Promise and Provisos of Artificial Intelligence and Machine Learning in Healthcare. J. Healthc. Leadersh. 2022,
14, 113. [CrossRef] [PubMed]

51. Bae, S.-Y.; Lee, J.; Jeong, J.; Lim, C.; Choi, J. Effective data-balancing methods for class-imbalanced genotoxicity datasets using
machine learning algorithms and molecular fingerprints. Comput. Toxicol. 2021, 20, 100178. [CrossRef]

52. Kamiri, J.; Mariga, G. Research methods in machine learning: A content analysis. Int. J. Comput. Inf. Technol. 2021, 10, 78–91.
[CrossRef]

53. Kim, J.-Y.; Shin, Y.K.; Seol, G.H. Incidence and risk factors for pressure injury in hospitalized non-small cell lung cancer patients:
A retrospective observational study. J. Tissue Viability 2023, 32, 377–382. [CrossRef]
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