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Abstract: Background: Pressure injuries (PIs) are increasing worldwide, and there has
been no significant improvement in preventing them. Traditional assessment tools are
widely used to identify a patient at risk of developing a PI. This study aims to construct
a novel fused multi-channel prediction model of PIs in adult hospitalized patients using
machine learning algorithms (MLAs). Methods: A multi-phase quantitative approach
involving a case–control experimental design was used. A first-hand dataset was collected
retrospectively between March/2022 and August/2023 from the electronic medical records
of three hospitals in Palestine. Results: The total number of patients was 49,500. A balanced
dataset was utilized with a total number of 1110 patients (80% training and 20% testing). The
models that were developed utilized eight MLAs, including linear regression and support
vector regression (SVR), logistic regression (LR), random forest (RF), gradient boosting
(GB), K-nearest neighbor (KNN), decision tree (DT), and extreme gradient boosting (XG
boosting) and validated with five-fold cross-validation techniques. The best model was RF,
for which the accuracy was 0.962, precision was 0.942, recall was 0.922, F1 was 0.931, area
under curve (AUC) was 0.922, false positive rate (FPR) was 0.155, and true positive rate
(TPR) was 0.782. Conclusions: The predictive factors were age, moisture, activity, length
of stay (LOS), systolic blood pressure (BP), and albumin. A novel fused multi-channel
prediction model of pressure injury was developed from different datasets.

Keywords: pressure injury; prediction model; machine learning

1. Introduction
Pressure injuries are increasing worldwide, and even if they are preventable, there has

been no significant improvement in their prevention [1]. Hospital-acquired pressure injury
(HAPI) among patients admitted to intensive care units (ICU) ranges from 14.3% to 43.2%,
and in traumatic patients ranges from 20.3% to 38.5% [2]. Global prevalence ranges from
6% to 18.5% [1]. Moreover, the number of deaths related to pressure injuries increased from
13,700 in 1990 to 20,300 in 2017 [3]. The literature showed that 41% of patients developed a
pressure injury that was unavoidable, and 59% were avoidable [4].

The pressure injury impacts patient outcomes, length of stay (LOS), burden costs,
mortality, and readmission rates. This increases the healthcare cost of patients, and LOS
increasing significantly, delaying the discharge of the patient to home [5].

Prolonged pressure causes changes in body position in people with normal movement
and sensory feedback to prevent injury. On the other hand, persistent pressure can cause
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tissue ischemia, damage, and necrosis when this feedback mechanism is compromised,
which can result in pressure injuries. These injuries usually begin when the pressure
from body weight presses against the skin covering bony parts, or when pressure from
medical devices exceeds the threshold required for venous and arterial blood flow, causing
local tissue hypoxia. Furthermore, reperfusion injury, which results from the resumption
of blood flow following ischemia, can worsen injury by inducing oxidative stress and
inflammation, especially after repeated cycles of ischemia–reperfusion, which are more
harmful than continuous ischemia [6].

Due to the increased metabolic demands of muscles, this damage frequently advances
deeper before impacting the skin, so early symptoms are generally a warning of more
serious underlying damage. The failure in the local circulation when lying at an angle
causes friction and shear, which exacerbates hypoxia. Furthermore, sweat or incontinence-
related wetness increases the vulnerability of the skin to harm during repositioning, hence
elevating the risk of pressure injuries [7].

The complexity of a pressure injury mainly refers to the multiple factors accompanying
the affected patient and the treatment environment. In other words, a hospital-acquired
pressure injury results from a dynamic process of nonlinear contributing factors from the
care process and patient interaction [8].

The identification of risk factors for pressure injury enables the utilization of preventive
measures at the proper time and before the occurrence of pressure injury [2]; various risk
factors affect pressure injury, and some of them are predictor variables [9].

Those factors may include, but are not limited to, age, gender, body mass index, length
of stay, medications, vital signs, anesthesia, Braden scale score, Braden subscale (sensory
perception, moisture, activity, mobility, nutrition, and friction and shear) and diagnoses
such as cancer, cardiovascular disease, diabetes mellitus (DM), renal failure, and respiratory
issues [2,9–14]. Atherosclerosis, urgent admissions, paralysis, congestive heart failure, and
procedures performed in the lower limbs or amputation posed as high-risk factors for
pressure injuries [14]. Also, the most impactful risk factors for pressure injuries are anemia,
hypoalbuminemia, and staff knowledge about the possible risk factors [11]. Also, falls,
repositioning, and oxygen level [15]. Pressure injury correlates with knowledge about the
healing process and its length after receiving effective treatment strategies [16].

Finally, some of the risk factors correlate with the period in which patients acquired
a pressure injury. For example, patients with low levels of consciousness or ventilators
acquired pressure injuries at an early stage of hospital stay, while sedative patients, patients
in need of nutrition interventions, patients with a tracheostomy tube, patients suffering
from diarrhea, patients on medications such as steroids, anticoagulants, anti-inflammatory,
and patients with gastric tubes acquired pressure injuries at a late stage of their hospital
stay [2].

Visual skin assessment (VSA) to predict pressure injury relies on assessment tools that
cannot be reliable prediction methods [17], and these methods are limited and problematic
because pressure injuries develop from the deep tissue, but they cannot be noticed until
they reach the skin layer [18]. When this leads to an incidence of pressure injury, the patient
will have already sustained a pressure injury by that time [17]. Thus, the method needs to
be improved to detect pressure injury earlier through a different way to help healthcare
providers set and implement prevention measures for pressure injury [18].

Objective measures to predict pressure injury called biomarkers, defined as the normal
reaction to physiological skin irritation [17], have significant potential to identify the risks
of pressure injury through identifying inflammation, activated by inflammation biomarkers
such as keratinocytes before the skin changes and skin injury [19]. According to [17], which
reviewed the role of the biomarkers in early detection, conducted without limitation for the
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date of publication, language, and age of patients, biomarkers are used to detect pressure
injury. The reviewed biomarkers included albumin, Waterlow score, hemoglobin (Hb),
C-reactive protein (CRP), age, gender, heart-type fatty acid-binding protein (H-FABP), and
granulocyte–macrophage colony-stimulating factor (GM-CSF). The combination of gender,
age, Hb, Albumin, and CRP are the significant biomarkers, at 0.79.

One prediction model of pressure injury aimed to identify the predictive risk fac-
tors that impact pressure injury without relying on traditional assessment methods [20].
Furthermore, pressure injury risk factors are vast, and the staff cannot predict all cases
or scenarios that lead to or cause pressure injury due to the uniqueness and variation in
patients [8,10,21].

According to Sir William Osler, “medicine is a science of uncertainty and an art of
probability”. This evolution of a new approach to medicine indicates the importance of
machine learning in the healthcare industry and formulates the promising future of artificial
intelligence (AI) [22,23].

A flourishing advancement in technology has impacted the digitalization of the health-
care industry, increased the rapid progress of electronic medical records, and made elec-
tronic medical records mandatory [24]. Electronic medical records are used to keep medical
information and provide healthcare providers with patient data; electronic medical record
assist in transforming healthcare and traditional medical records [25].

The availability of electronic medical records enables the utilization of other benefits
such as the efficiency of resources, supporting decision making, and improvement in the
quality of care and the work–life balance of family physicians [24].

Based on the widespread utilization of electronic medical records, and in order to
maximize their benefits, AI has been implemented in different categories of healthcare;
this approach emerged in 1950, and since then, machine learning applications have been
implemented in the healthcare industry [26].

The promising aspects of AI and its applications have been shown in different domains,
such as the transformational role of machine learning as one of the vital usages, predicting
the risks of events and disease, helping in the diagnosis of diseases, accuracy in therapeutic
approaches, analysis of the complex data patterns, and enhancement of the quality of
clinical trials [23,26–28].

Deep learning, AI, or machine learning are used interchangeably, aiming to acquire
the machine intelligence of humans without programming [26]. Machine learning data
are randomly distributed to the training, test, and validation sets to maintain reliability
and eliminate prediction bias [29]. The learning methods are categorized into supervised,
unsupervised, or semi-supervised, which are types utilized based on the research purposes
and the research question; the supervised method is widely used to predict disease or risk,
the unsupervised method is utilized to evaluate data by reduction, and the semi-supervised
method is used to build a strategy from data [26].

Two studies, Assadi et al. [30] and Parashar et al. [31], were conducted to elaborate
on the use of machine learning in the health industry and provide a proper direction for
utilizing machine learning in the future. The studies revealed that machine learning might
provide the interpretation and evaluation of diagnostic tests, transformation, the processing
of electronic medical records, and a framework for electronic medical records. Also, the
integration of the machine learning framework needs to be considered with the three
dimensions of integration context: patients, users, and technical staff. Finally, the model
design must be facilitated and guided by an engineering method in order to improve the
model’s success in the integration phase.

A systematic review study was conducted by Tofaffaha et al. [32] to review applica-
tions of AI and decision support systems (DSSs) that were used to reduce pressure injuries,
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which revealed that there was insufficient evidence for the impact of AI on the preven-
tion of pressure injuries, and most of the proposed solutions were not implemented in
healthcare settings.

The diagnostic accuracy of machine learning was discussed in Lao et al. [33]’s sys-
tematic review and meta-analysis study, which was conducted to assess accuracy in the
diagnosis of anterior cruciate ligament (ACL) injury; this study provided a significant
protocol to utilize the prediction model of ACL injury based on magnetic reasoning im-
agery (MRI). According to Gefen’s study [34], which highlights the absence of biomedical
technology to assist in screening or identifying cell or tissue damage early, there is no
technology to detect inflammation, damage, or poor perfusion for the affected area of a
pressure injury.

To the best of the researchers’ knowledge, this research is the first to construct a novel
fused multi-channel prediction of pressure injury model for adult hospitalized patients.
This research will provide an important implication for healthcare providers, mainly
nursing staff, to identify the patients at risk of pressure injury during hospitalization and
to consider the pressure injury risk factors and biomarkers for early detection.

This research is going to propose four questions: (1) Are the fused multi-channel
machine learning-based prediction models identifying the patients at risk of pressure injury
in hospitalized adult patients? (2) What is the best machine learning algorithm to predict
pressure injury? (3) What is the best accuracy achieved? (4) What are the predictive factors
that are utilized in the prediction model?

This paper is divided into seven sections: (1) an introduction, which provides the
reader with background about the topic; (2) a literature review, which will summarize
the previous work related to this topic; (3) Materials and Methods, which includes data
collection, data processing, exploratory data analysis, feature engineering, machine learn-
ing algorithms used in the prediction models, and performance evaluation; (4) Results,
including the risk factors and findings of the predictions models; (5) a discussion of the
findings; (6) our conclusions and recommendations; and (7) the limitations of the study.

2. Literature Review
Several studies have presented data-driven models for predicting pressure injuries by

utilizing various machine learning algorithms and techniques [8,21]. One prediction model
of pressure injury aimed to identify the predictive risks factors that impact pressure injury
without relying on traditional assessment methods [20]. Furthermore, pressure injury risk
factors are vast, and the staff cannot predict all cases or scenarios that lead to or cause
pressure injury due to the uniqueness and variation of patients [8,10,21].

Pressure injury affects patient outcomes and treatment plans. It may lead to serious
complications before the staff can identify a pressure injury occurrence, so prediction
methods for pressure injury identify it earlier and alarm the nurses and system of the risk
of pressure injury for the admitted patients according to certain factors and biomarkers [8].

The current method of assessing pressure injury relies on skillful or qualified nurses to
determine the risks of pressure injury. Unfortunately, the shortage of qualified specialized
nurses is an ongoing problem [35], which leads health scientists, nursing leaders, and
treating physicians to seek to apply a new methodology that is capable of identifying all
risk factors and predicting pressure injury earlier, before the skin changes and the patient is
harmed, in order to take necessary measures to prevent a hospital-acquired pressure injury
and maintain patient safety [23,36].

Some of the literature discusses prediction models in an inpatient setting, such as
Ladios-Martin et al. [20], who collected data from adult ICU inpatients, Do et al. [37], who
collected data from adult hospitalized patients, Walther et al. [38], who collected data from
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inpatients, Song et al. [39], who collected data from five hospitals, and other studies discuss
prediction models in emergency settings, such as Wei et al. [40], who collect data from
patients in emergency departments.

The utilization of machine learning to construct a prediction model for pressure
injury is discussed in the literature, and prediction models for pressure injury have been
developed. And yet, there are differences in the risk factors and biomarkers that have been
discussed and included in the models.

The following studies showed the unique potential risk factors and biomarkers used
in the developed models in each study, such as reason for admission and medical history
which was studied by Xu et al. [41]; medications and ventilation, studied by Shui et al. [42];
admission weight, studied by Cramer et al. [43]; vasopressor medications, sedation, and
oxygenation, studied by Alderden et al. [10]; Hb, and comorbidities, studied by Tang and
Xu [44]; oral mucosal, endotracheal tube (ETT), vasopressor, and hematocrit (HCT) steroids
were studied by Choi et al. [45]; severity of illness was studied by Anderson et al. [46];
diet, pain, paralysis, skin condition, comorbidities, and department type were studied by
Nakagami et al. [21]; cancer, anti-cancer therapy, Waterlow score, acute physiology and
chronic health evaluation (APACHE) II score, and blood purification were studied by Sun
et al. [47]; place of birth and hospital type were studied by Ladios-Martin et al. [20]; and
immunocompromised status was studied by Deschepper et al. [48].

The common risk factors and biomarkers used in most of developed models stud-
ies were age, gender, weight, diagnoses, length of stay, albumin, comorbidities, Braden
scale, level of consciousness, incidence of pressure injury, clinical laboratory results, pa-
tients’ demographics, diagnosis, body mass index, heart rate, mean arterial pressure, and
temperature [8,10,20–22,36,38,39,41–54].

Machine learning and artificial intelligence have a promising future in predicting
pressure injuries and assisting healthcare providers in detecting pressure injuries earlier. For
example, Hyun et al. [51] developed a prediction model which used LR with nine features
for patients in the ICU and compared it to their Barden scores, and the model showed
an acceptable level of pressure injury prediction; the performance metrics are as follows:
accuracy 91.7%, sensitivity 65%, specificity 69%, positive predictive value (PPV) 21%,
negative predictive value (NPV) 34%, and area under the curve (AUC) 73%. Ji-Yu et al. [52]
developed a prediction model (XGBoost) for patients undergoing cardiovascular operations,
and the model predicted pressure injury based on the clinical data; the performance metrics
of the prediction model were as follows: accuracy (0.80), sensitivity (0.81), specificity (1),
PPV (1), NPV (0.76), and AUC (0.50–1). Ladios-Martin et al. [20] set up a prediction
model (LR, SVR, RF, and DT) and seven features were included in the prediction model
for patients in ICU, and the performance metrics of the prediction model were excellent,
as follows: accuracy (0.65–0.68), sensitivity (0.90), specificity (0.74), precision (8.76–10.87),
recall (0.99–1), and AUC (0.89). Hu et al. [50] developed three prediction models (DT,
LR, and RF) for inpatients that predicted pressure injury and the performance metrics to
measure the results of the experiments were as follows: sensitivity (0.69–1), specificity
(0.721–0.99), precision (0.79–0.99), recall (0.82–1), and AUC (0.876–1); the RF was the
best model.

The potential risk factors recruited by the developed prediction models in the previous
literature ranged from 6 to 50 risk factors; the common risk factors were diseases, laboratory
results, the Braden scale, use of medications, age, vital signs, gender, body mass index (BMI),
LOS, duration of surgery, critical condition, Glasgow coma scale (GCS), weight, mechanical
ventilation, anesthesia and sedation, oxygenation, history of PIs, and department type
(open or closed unit). Dweekat, Lam, and McGrath’s [55] study, which was the study with
the highest number of risk factors, recruited them from the rest with 50 risk factors.
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The most common research methods in the literature were cohort retrospective studies,
which formulated 59% of the total studies, followed by cohort prospective studies, about
19%, and 7% experimental design. The datasets ranged between 206,540 patients and
149 patients, and the most common data balancing method was random oversampling,
which comprised 34% of the developed models and was followed by synthetic minority
oversampling at 14%. Furthermore, collecting data from the hospital’s electronic medical
records (EMRs) was the dominant approach at 74% of the total databases. Finally, the
developed prediction models recruited their samples from hospital settings, and most
hospital settings were intensive units, with 52% of total developed models, and 37% did
not report the setting type or department type.

However, although the results obtained from these studies are promising, none of
these studies successfully utilized a fused multi-channel prediction model of pressure
injury. Furthermore, from the previous literature and based on the variables, features,
performance metrics, and context discussed in these studies, this literature review of the
previous work on prediction models of pressure injury has shown that the prediction model
predicts which patients may develop pressure injury based on their risk factors but does
not predict when the patients may acquire the pressure injury. Additionally, one of the gaps
found in the previous works is that none of them studied, or investigated, the accreditation
status as a variable or feature in the prediction model developed in those studies.

3. Materials and Methods
This section presents the methodology of the study and is divided into data collection,

data preprocessing, feature engineering, and construction prediction model by using
machine learning algorithms. Figure 1 illustrates the main phases of the prediction model
of pressure injury. The next subsection will explain in detail these five phases and their
components utilized in the construction of the pressure injury prediction model.
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3.1. Data Collection

The researchers provided the information technology (IT) department with a list of all
required predictable variable data with complete definitions of each item. These data were
extracted from hospital databases by structured query language (SQL), and the researchers
performed a quality check on the quality of the data extracted, and the missing or irrelevant
data were corrected and changed; the final dataset met all requirements.

The study was conducted at a Private Hospitals Group called Arab Hospitals Group
which included the following hospitals: Istishari Arab Hospital, Specialized Arab Hospital,
and Ibn Sina Specialized Hospital (which are coded as RX, NX, and JX hospitals). These
hospitals are private sector facilities located in the middle and north of the West Bank with
a total bed count of 450 and total admissions of 42,500 patients annually [56].

The study population included a sample of patient medical records who were treated
at three private hospitals in Palestine (RX hospital, NX hospital, and JX hospital). Hos-
pital statistics showed that there were about 85,500 admissions annually for all three
hospitals [57]. A first-hand dataset was collected retrospectively from the databases of
the hospitals. These data were collected from the patients’ electronic medical records and
reporting system based on the inclusion and exclusion criteria. No participants or patients
were required in this study. The inclusion criteria for the study included adult patients
admitted to the hospitals, patients without pressure injuries on the day of admission, and
patients screened on admission for pressure injury by the Braden scale. In addition, the
study excluded patients younger than 18 and those admitted to the hospital with pressure
injuries acquired from outside the hospital (home or other facilities before admission).

The data collected consisted of three datasets with an overall count of 1,900,132 rows
and 45,990 patient records. The collection period included all data (census) according
to the inclusion criteria from 1 March 2021 till 31 August 2023 retrospectively for the
three hospitals as a primary data source (from the hospitals’ database), which meant that
the data were extracted by the IT staff based on the researchers’ request and on the data
extraction sheet for research purposes and first-hand dataset use.

Data confidentiality was maintained for all types of data, and confidentiality was
assured for the hospitals, in that the data would not be available for anyone who was not
involved in the study. The data were maintained in a secure file and a locked computer.
Additionally, the patients’ names, ID numbers, and dates of birth were not included in
the data collection and were not required in the study. Finally, that data and information
was utilized for research purposes only, and the researchers encrypted the hospital name
through codes after mapping those codes with hospitals in the data collection process to
maintain the privacy of the hospitals.

The data extracted included all the risk factors (age, gender, length of stay, diagnosis,
department type (open units and intensive units), vital signs, anesthesia, mechanical
ventilator, Braden score, Braden subscales (sensory perception, moisture, activity, mobility,
nutrition, and friction and shear), biomarkers of pressure injury Hb, white blood cells
(WBC), CRP, aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine,
hemoglobin A1c (HA1c), bilirubin, albumin (Alb), uric acid, and protein), and medication
management system information (to extract all medications that were applied to patients
during their hospital stays).

In addition, data of hospital-acquired pressure injury incidences were extracted from
the incident management system retrospectively available in the three hospitals, including
the stages of pressure injury (stage one, stage two, stage three, or stage four). All the
extracted variables were linked together with a unique identifier number called (encounter
ID) which was autogenerated by the system used by the three hospitals to facilitate the
linking of the variables and datasets together.
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3.2. Data Processing

The researchers extracted a balanced dataset with a total of 1110 patients (the total
number of patients) with an overall count of 92,417 rows that included all patients with
hospital-acquired pressure injury (555 patients) and a random sample of patients without
hospital-acquired pressure injury (555 patients) via a simple random sampling technique
from the original dataset which included 45,900 patients. This method was utilized to
prevent the data size effect on the model’s development and training of the algorithms.

After data collection, data preprocessing and cleaning was conducted. The data clean-
ing aimed to clean irrelevant and missing data. The data in the datasets were checked for
duplication, which was linked with the unique number of each patient in these datasets;
those steps were performed by the researchers using the Visual Studio program with
assistance from the Python programming language. Those datasets were generated sepa-
rately due to the nature of the data and their size (a dataset for laboratory tests, a dataset
for medications, a dataset for patient records, and a dataset for incident reports). Those
datasets were merged into one dataset, which included patient records with laboratory tests
and medications.

The researchers used the Microsoft Excel and Python programming languages to
perform data preprocessing and transformation to ensure that all columns’ names were
correct, and the content of the columns was clear to the reader. Furthermore, mapping of
the hospitals with accreditation status and department categories was carried out.

The researchers performed data visualization which aimed to check the quality of the
data and the effectiveness of the data cleaning and preprocessing; this phase showed some
absence or errors in the data, which were brought back to the IT staff in order to fill in the
missing data, and all issues were cleared. Phase two was carried out to understand the
data, visualize all variables and features, and ensure that all the required data were well
prepared. Phase three of the data visualization was performed to provide the researchers
with a better understanding of the features that correlated with pressure injury, and the
possible features that needed to be included in feature engineering.

3.3. Exploratory Data Analysis

The balanced dataset included 1110 patients, which included all patients with hospital-
acquired pressure injury (555 patients), a random sample of patients without hospital-
acquired pressure injury (555 patients), and an overall count of 92,417 rows. The total
number of patients from the RX hospital was (475 patients; 43%), from the NX hospital
(382 patients; 34%), and from the JX hospital (253 patients; 23%). Moreover, patients from
the non-accredited hospitals (NX and JX) were (635 patients; 57.2%), and (475 patients;
42.8%) of the dataset were from the accredited hospital (RX).

3.3.1. Risk Factors

The risk factors in this study were age, gender, length of stay, department type,
diagnosis, operation, anesthesia, vital signs, Braden score, Braden subscales, mechanical
ventilator, and medications. All these risk factors were collected from the hospitals during
the data collection process, and the datasets included all these features for all patients who
were applicable.

The distribution of the potential risk factors according to the dataset collected in
relation to the categorization of pressure injury is presented in Table 1. This table shows
the potential risk factors split into (555) patients with hospital-acquired pressure injury
and (555) patients without hospital-acquired pressure injury. Table 1 includes the number
of patients, with percentages, according to hospital, gender, age, accreditation status,
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department type, anesthesia type, performed operation, mechanical ventilator, Braden
scale level, and pressure injury grade.

Table 1. Percentage of potential risk factors according to pressure injury status.

Risk Factor Sub-Risk Factor Frequency and Percentages Total

Non-HAPI HAPI

Hospital
RX 262 (55.2)% 213 (44.8)% 475
JX 108 (22.7)% 145 (30.5)% 253
NX 185 (38.9)% 197 (41.5)% 382

Gender Female 237 (49.9)% 230 (48.4)% 467
Male 318 (66.9)% 325 (68.4)% 643

Age Adults (25–64 years) 366 (77.1)% 218 (45.9)% 584
Elderly (65 years and over) 128 (26.9)% 306 (64.4)% 434
Young Adult (18–24 years) 61 (12.8)% 31 (6.5)% 92

Accreditation Status
Accredited 262 (55.2)% 213 (44.8)% 475

Non-Accredited 293 (61.7)% 342 (72)% 635

Department Type Intensive Units 154 (32.4)% 302 (63.6)% 456
Open Units 401 (84.4)% 253 (53.3)% 654

Anesthesia

General 169 (35.6)% 176 (37.1)% 345
Local Anesthesia 109 (22.9)% 54 (11.4)% 163

Spinal 15 (3.2)% 3 (0.6)% 18
Sedation 3 (0.6)% 10 (2.1)% 13

Combined Spinal Epidural 0 (0)% 1 (0.2)% 1
Epidural 1 (0.2)% 0 (0)% 1

Performed Operation No 258 (54.3)% 311 (65.5)% 569
Yes 297 (62.5)% 244 (51.4)% 541

Braden Scale Level
High Risk 31 (6.5)% 441 (92.8)% 472
Low Risk 524 (110.3)% 114 (24)% 638

Pressure Injury Grade
Grade 1 0 (0)% 179 (37.7)% 179
Grade 2 2 (0.4)% 279 (58.7)% 281
Grade 3 0 (0)% 97 (20.4)% 97

Mechanical Ventilators
No 536 (112.8)% 442 (93.1)% 978
Yes 19 (4)% 113 (23.8)% 132

The data showed that the average age of the patients was 55 years (with an SD of
19.61). The patients’ gender distribution showed that the number of female patients
was 467, representing 42.1% of patients, and the number of male patients was 643,
representing 57.9%.

The number patients admitted to the “open units” across all hospitals was 654, repre-
senting 58.9% of the total patients, and 456 patients we admitted to the “intensive units”,
representing 41.1%. The data categorized the patients who underwent operations by their
number in each hospital, totaling 541 and representing 49.2% of total patients. The number
of patients who underwent operations under anesthesia was 541, representing 49.2% of
the total.

For the Braden scale, the data showed that the number of patients at a high risk level
was 472, representing 42.5% of all patients across all hospitals, while the number of patients
at a low risk level was 638, representing 57.5%. The number of patients on mechanical
ventilators was 132, representing 11.9% of total patients.

Table 2 includes the means of vital signs, LOS, and operation duration per hospital,
and the average of each variable. The average length of a patient’s stay (LOS) was 6.5 days
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(with an SD of 14.61); based on the table below, LOSs were high for the HAPI patient group
in comparison with non-HAPI patient group among the three hospitals, with an average of
14.8 days and an SD of (1.15) for the HAPI group and an average of 2.7 days with an SD of
(0.95) for the non-HAPI group.

Table 2. Distribution of potential risk factors according to pressure injury status.

Risk Factor Hospital Mean Average

Non-HAPI HAPI

LOS (days)
RX 3.2 13.6 7.8
JX 3.3 14.9 9.9
NX 1.6 15.9 8.9

Operation Duration (hours)
RX 1.2 2.2 1.6
JX 1.3 2.4 1.9
NX 0.4 1.1 0.8

Systolic BP (millimeters of mercury)
RX 123 118 120
JX 123 123 123
NX 119 120 120

Diastolic BP (millimeters of mercury)
RX 71 67 69
JX 73 72 72
NX 70 67 69

Temperature (centigrade)
RX 36.5 36.5 36.5
JX 36.4 36.5 36.5
NX 36.5 36.5 36.5

Pulse (beats per minute)
RX 73 76 74
JX 68 71 70
NX 73 70 72

For the operation period, the non-HAPI patient group was lower than the HAPI
patient group; the average was 0.96 h with an SD of (0.49) for the non-HAPI group, and the
average was 1.90 h with an SD of (0.70) for the HAPI patient group.

The patients’ vital signs in the datasets were systolic blood pressure, diastolic blood
pressure, temperature, and pulse. These vital signs were distributed as follows: the average
systolic blood pressure was 120.6 with an SD of 18.32 (the maximum was 197 and the
minimum 45), the average diastolic blood pressure was 69.5 with an SD of 12.01 (the
maximum was 118 and the minimum 26), the average temperature was 36.4 with an SD of
0.31(the maximum was 40 and the minimum 33.7), and the average pulse was 72.3 with an
SD of 14.39 (the maximum was 180 and the minimum 33).

3.3.2. Medications

The data showed that the number of unique medications applied to patients was
1151 medications; the total number of medication doses for all patients was 29,009. The
distribution of these medications among the three hospitals was as follows: RX at 42.1%,
NX at 34.8%, and JX at 23.1%.

The top ten medications among all the medications ordered, 6906, represented 23.8%,
as follows: Nexium (1301 orders, 4.5%), Perfalgan (1169 orders, 4%), Fentanyl (658 orders,
2.3%), Furosemide (605 orders, 2.1%), Clexane (601 orders, 2.1%), Metoclopramide (531
orders, 1.8%), Meropenem (514 orders, 1.8%), Potassium Chloride (512 orders, 1.8%),
Dexamethasone (508 orders, 1.8%), and Propofol (507 orders, 1.7%). The distribution of
these medications among the three hospitals was as follows: RX at 42.1%, NX at 34.8%, and
JX at 23.1%.
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3.3.3. Biomarkers (Laboratory Tests)

The data showed that 12 unique laboratory tests were requested for the patients in
the dataset, as follows: Hb, WBC, CRP, AST, BUN, creatinine, HA1c, bilirubin total (T),
bilirubin direct (D), Alb, uric acid, and protein.

The number of tests in the dataset was 50,895 tests. Most of those tests were WBC
and Hb tests (11,664 tests, 22.92% and 10,402 tests, 20.44%, respectively), followed by
creatinine (8208 tests, 16.13%), BUN (4871 tests, 9.57%), CRP (4487 tests, 8.82%), AST
(3267 tests, 6.42%), albumin (3207 tests, 6.30%), bilirubin total (1981 tests, 3.89%), bilirubin
direct (1885 tests, 3.70%), HbA1c (367 tests, 0.72%), protein (301 tests, 0.59%), and uric acid
(255 tests (0.50%).

The average laboratory results for the patients in the dataset were abnormal (above
normal range or below normal range according to the hospital’s criteria). This included
the following tests: Alb was 2.98 (with an SD of 0.64), bilirubin (D) was 1.56 (with an SD
of 3.81), bilirubin (T) was 2.33 (with an SD of 5.06), Bun was 31.31 (with an SD of 26.20),
creatinine was 1.59 (with an SD of 1.55), CRP was 89.17 (with an SD of 83.83), Hb was 10.30
(with an SD of 2.15), protein was 5.91 (with an SD of 3.01), AST was 111.51 (with an SD of
600.32), Hb A1c was 7.25 (with an SD of 2.14), and WBC was 11.13 (with an SD of 5.73).
Uric acid, which was 5.85 (with an SD of 3.14), was the exception and within the normal
range, as presented in Table 3.

Table 3. Average laboratory test results with interpretation of results.

Tests Name Average Result Normal Range Interpretation

Albumin (Alb) 2.98 3.5–5.2 Below Normal
Bilirubin (D) 1.56 0–0.2 Above Normal
Bilirubin (T) 2.33 0.2–1.2 Above Normal
Blood Urea Nitrogen (Bun) 31.13 6–20 Above Normal
Creatinine 1.59 0.7–1.2 Above Normal
C-Reactive Protein (CRP) 89.17 <5 Above Normal
Hb 10.30 12.0–14.0 Below Normal
Hemoglobin A1c (Hb A1c) 7.25 <5.7 Above Normal
Protein 5.91 6.4–8.3 Below Normal
Aspartate Aminotransferase (AST) 111.51 0–40 Above Normal
Uric Acid 5.85 3.4–7 Normal
White Blood Cells (WBC) 11.13 4–11 Above Normal
Albumin 2.98 3.5–5.2 Below Normal

3.3.4. Pressure Injury

The dataset showed the pressure injury status for patients across hospitals: the number
of hospital-acquired pressure injuries at RX was 213 patients out of 475, comprising 44.8%; at
JX, 145 patients out of 253, comprising 57.3%; and at NX, 197 patients out of 382, comprising
51.6%. The number of patients with no pressure injury at RX was 262 patients, JX was
108 patients, and NX was 185 patients.

The incidence rate of hospital-acquired pressure injuries was 1.21 per 100 patients. The
incidence rate was calculated for each hospital based on the number of admitted patients
and the number of hospital-acquired pressure injuries in each hospital. The incidence rate
for the RX hospital was the lowest, at 1.05 per 100 patients, followed by NX at 1.13 per
100 patients, and the highest rate among the three hospitals was JX at 1.75 per 100 patients.

3.4. Feature Engineering

Feature engineering and selection were needed, as well as model selection. The
researchers utilized the results of the visualization and analysis to determine or target the
features that correlated with pressure injury. Those features were categorized into three
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divisions (risk factors, biomarkers, and medications), and the researchers developed four
different subgroups of features (variables) to be assigned in the proposed models.

The feature subgroups were split into four based on correlation with pressure injury,
statistical significance, feature importance, and potential factors without the Braden scale,
as follows: (1) group A (potential factors that had a high correlation with pressure injury),
(2) group B (potential factors that had statistical significance with pressure injury), (3) group
C (potential factors that had a high importance of features), and (4) group D (potential
factors that had a high correlation with pressure injury without the Braden scale). Each
group of features was used in one model and with eight different algorithms to determine
the success of the predictive features in the model based on the performance metrics of
those models and algorithms.

3.4.1. Correlations with Pressure Injury

Correlations were made between pressure injuries and the risk factors and biomarkers,
and the correlations of the variables were categorized into numeric (continuous variables)
and categorical variables: this categorization and the type of data yielded two different
charts of correlation.

Correlation of Pressure Injury with Risk Factors

The datasets had 37 variables that may have correlated with pressure injury; the
correlations were visually reconstructed by using tools that helped in identifying significant
relationships and ensuring that the findings were both interpretable and accessible. These
included heat maps for Pearson correlations among numeric variables, which offered a
color-coded representation of the correlation strengths and suitable plots for displaying
Cramér’s V results.

Figure 2 shows a strong correlation between pressure injury and Braden score (−0.63);
this correlation is presented in a negative direction because a lower Braden score indicates
a high risk of pressure injury. This means there is a significant negative correlation found
between the Braden Score and pressure injury, r (78) = −0.63, p < 0.01. This indicates that
lower Braden Scores, which suggest higher risk, are associated with a higher occurrence of
pressure injuries.

Furthermore, this heat map shows a moderate positive correlation between pressure
injury and age (0.42), indicating that a patient’s age being older was associated with an
increased likelihood of pressure injuries. Finally, there was a moderate positive correlation
between pressure injury and length of stay (0.41), r (78) = 0.42, p < 0.01, indicating that
longer hospital stays were associated with an increased likelihood of pressure injuries.

Figure 3 presents the correlation of the categorical variables with laboratory tests.
It shows that there was a strong correlation between pressure injury type and pressure
injury grade (0.71), which relied on the fact that pressure injury grades result from pressure
injury type. There was a strong association between pressure injury grade and department
name, V = 0.66, indicating a significant variability of pressure injury grades across different
departments. A considerable association was also observed between pressure injury grade
and diagnosis, V = 0.57, suggesting that the nature of the diagnosis significantly affected
the grading of pressure injuries. Another notable association existed between pressure
injury grade and the anesthesia type, V = 0.71, indicating that the type of anesthesia used
may have influenced the severity grade of pressure injuries.
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Figure 4 presents that there was a moderate positive correlation between medication
and (pressure injury type and the Braden scale) (0.44, 0.49), which may relate to the type of
medications used in the treatment or to reduce the risks of pressure injury; this also means
that medication may correlate or lead to pressure injury.
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Correlation of Pressure Injury with Biomarkers (Laboratory Tests)

The data concerning laboratory tests and pressure injury showed that there was a weak
negative correlation between pressure injury and laboratory test results (−0.06), which may
be explained by the correlation of the results of laboratory tests with pressure injury being
above or below the normal range for each test. In addition, some laboratory tests had high
values in relation to the clinical situation. There were different factors, such as severity or
the critical status of patient’s condition, that impacted and affected the laboratory results
significantly, as presented in Figure 5.
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Figure 5. Correlation between pressure injury and lab results.

The data show that there was a strong negative correlation between pressure injury
and Alb, which was (−0.90). There was also a moderate negative correlation between
pressure injury and protein, which was (−0.51). The correlation between pressure injury
and bilirubin (T) was (−0.39), and the correlation between pressure injury and bilirubin (D)
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was (−0.38). Moreover, there was a strong positive correlation between pressure injury and
WBC, which was (0.71). Finally, there was a weak positive correlation between pressure
injury and creatinine, which was (0.32), and there was a weak positive correlation between
pressure injury and CRP, which was (0.25).

The correlation analysis between pressure injury incidence and the laboratory results
was conducted using Pearson’s correlation coefficient. The analysis revealed a very weak,
negative correlation between pressure injury and lab results, r = −0.06. This suggests that
there was no significant linear relationship between the incidence of pressure injuries and
the laboratory results.

3.4.2. Statistical Tests

In preparation for applying the t-test and ANOVA to compare means among the
groups, and the Chi-Squared test to explore the association between two categorical vari-
ables, the key assumptions were verified to uphold the tests’ validity.

Statistical Test of Pressure Injury with Biomarkers (Laboratory Tests)

The independent sample t-test was used to test the hypothesis of the biomarkers’ (labo-
ratory test) correlation with pressure injury. However, there were no statistically significant
differences in the means of HbA1c related to pressure injury at the level (p ≤ 0.05), where
the p-value was equal (0.782), as presented in Table 4.

Table 4. Laboratory results according to pressure injury status (t-test).

Biomarkers Condition Mean t df p Value 95% CI

Creatinine Yes (HAPI) 1.68 8.96 3989 <0.001 [0.26, 0.41]
No (HAPI) 1.34

CRP Yes (HAPI) 94.77 8.42 2150 <0.001 [17.18, 28.33]
No (HAPI) 71.11

WBC Yes (HAPI) 11.59 14.85 6666 <0.001 [1.43, 1.86]
No (HAPI) 9.94

Hb Yes (HAPI) 9.92 −26.58 4647 <0.001 [−1.41, −1.21]
No (HAPI) 11.23

BUN Yes (HAPI) 35.61 18.79 4385 <0.001 [10.89, 13.53]
No (HAPI) 22.74

AST Yes (HAPI) 118.30 −0.48 1231 <0.001 [−83.94, 25.57]
No (HAPI) 132.53

Alb Yes (HAPI) 2.86 −17.26 1639 <0.001 [−0.47, −0.37]
No (HAPI) 3.28

Bilirubin (T) Yes (HAPI) 2.11 −2.47 1022 <0.001 [−1.18, −0.13]
No (HAPI) 2.77

Bilirubin
(D)

Yes (HAPI) 1.36 −2.88 931 <0.001 [−1.01, −0.19]
No (HAPI) 1.96

Uric Acid Yes (HAPI) 6.37 2.91 226 0.20 [0.35, 1.85]
No (HAPI) 5.27

Hb A1c Yes (HAPI) 7.28 0.28 348 0.78 [−0.38, 0.51]
No (HAPI) 7.22

Protein Yes (HAPI) 5.81 −1.14 291 <0.001 [−0.83, 0.22]
No (HAPI) 6.14

Abbreviations: df: degree of freedom; CI: confidence interval; HAPI: hospital-acquired pressure injury; CRP:
C-reactive protein; WBC: white blood cells; Hb: hemoglobin; BUN: blood urea nitrogen; AST: aspartate amino-
transferase; Alb: albumin; T: total; D: direct; Hb A1c: hemoglobin A1c.

There were statistically significant differences between the means (creatinine, CRP,
WBC, Hb, BUN, AST, Alb, bilirubin (T), bilirubin (D), uric acid, and protein) related to
pressure injury at the level of (p ≤ 0.05), with p-values equal to (1.61 × 10−16, 2.43 × 10−40,
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2.75 × 10−48, 8.54 × 10−148, 2.13 × 10−49, 7.38 × 10−6, 2.01 × 10−60, 3.65 × 10−11,
1.17 × 10−12, 2.04 × 10−2, and 1.51 × 10−4) respectively, as presented in Table 4.

Statistical Test of Pressure Injury with Risk Factors

ANOVA was used for the continuous variables and for more than two categories,
and included age, LOS, age category, type of anesthesia, operation duration, anesthesia
duration, systolic and diastolic BP, temperature, pulse, pressure injury grade, Braden score,
and Braden subscales (perception, moisture, activity mobility, and nutrition). There were
significant differences between the means of age and age category relating to pressure injury
at the level (p ≤ 0.05), with p-values < 0.001. There were significant differences between the
means of LOS relating to pressure injury at the level (p ≤ 0.05), with p-values < 0.001. There
were significant differences between the means of systolic BP, diastolic BP, temperature, and
pulse relating to pressure injury at the level (p ≤ 0.05), with p-values of (0.001, <0.001, 0.001,
0.040), respectively. There were significant differences between the means of anesthesia
type and anesthesia duration with pressure injury at the level (p ≤ 0.05), with the p-values
(0.005 and <0.001), respectively. There were significant differences between the means
of the Braden score and Braden subscales (perception, moisture, activity mobility, and
nutrition) relating to pressure injury at the level (p ≤ 0.05), with p-values (<0.001, <0.001,
<0.001, <0.001, <0.001, <0.001, and <0.001), respectively. There were significant differences
between the means of operation duration relating to pressure injury at the level (p ≤ 0.05),
with a p-value < 0.001. There were significant differences between the means of pressure
injury grade relating to pressure injury at the level (p ≤ 0.05), with a p-value < 0.001.

The Chi-Squared test was used for the categorical variables, which included gender,
department type, performed operation, Braden scale, mechanical ventilator, accreditation
status, pressure injury type, and medications. For the gender variable, there was no
significant relationship between gender and pressure injury status at X2 (1, N = 1110) = 1.81,
p-value = 0.670. In the department type variable, there was a significant relationship
between pressure injury type and pressure injury status at X2 (1, N = 1110) = 81.527,
p-value < 0.001. For the performed operation variable, there was a significant relationship
between performed operation and pressure injury status at X2 (1, N = 1110) = 10.129,
p-value = 0.001. For the Braden scale variable, there was a significant relationship between
the Braden scale and pressure injury status at X2 (1, N = 1110) = 619.624, p-value < 0.001. In
the mechanical ventilators variable, there was a significant relationship between mechanical
ventilators and pressure injury status at X2 (1, N = 1110) = 75.974, p-value < 0.001. For the
accreditation status variable, there was a significant relationship between accreditation
status and pressure injury status at X2 (1, N = 1110) = 8.836, p-value = 0.003. For the
pressure injury type variable, there was a significant relationship between pressure injury
type and pressure injury status at X2 (1, N = 1110) = 1102.029, p-value < 0.001. Finally, for
the medications variable, there was a significant relationship between medications and
pressure injury status at X2 (1, N = 1151) = 6854.12, p-value < 0.001.

3.5. Constructing Models by Using Machine Learning Algorithms

Supervised machine learning was utilized, where the algorithms learned from the
seen dataset with the title of the features. Then, testing was performed on the unseen data
(testing dataset), in which the data had the same structure as the original dataset and the
same features, and the algorithms could predict correctly [31].

The data were randomly assigned into three sets: training, test, and validation, with a
ratio of (80% training and 20% testing). Moreover, the model’s design was proposed and
developed. This experiment was repeated to generate four models, and each model used
one of the feature subgroups in the proposed model. Each model was a new experiment
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and was identified with a unique number that was linked to one of the subgroup features.
Each new model was trained with selected subgroup features and predictive modeling
approaches in the Python program software (Version 3).

The researchers used eight algorithms of predictive modeling approaches that were
categorized into two types: regression algorithms and classification algorithms. Each type
had unique algorithms that could be utilized in the predictive model. The algorithms were
popular in prediction, and the classification referred to the dependent variable. The target
of the prediction was categorical (HAPI or No HAPI), and regression was used to predict
the output of the model [58].

The machine learning algorithms used in the prediction models included (1) linear
regression, (2) support vector regression (SVR), (3) logistic regression (LR), (4) random
forest (RF), (5) gradient boosting (GB), (6) K-Nearest Neighbors (KNN), (7) decision tree
(DT), and (8) extreme gradient boosting (XG boost). These algorithms were part of a
complete set that could be used from a library of machine learning, which consisted of ten
major approaches, and each approach consisted of multiple algorithms. These algorithms
determined the way to deal with the data in the model and how the process of learning
from the data was achieved to accomplish the model [58].

In each experiment, the model was trained, and the eight algorithms generated results
from the training based on performance metrics; these metrics were divided into two types:
classification and regression. For regression, the performance metrics were mean squared
error (MSE) and coefficient of determination (R2); for classification accuracy, they were
recall, precision, F1 score, the AUC, true positive rate (TPR), and false positive rate (FPR).
The trained models were validated through a common technique called five-fold cross-
validation. All the results of the models were validated.

Due to the size of the dataset used in this study, we recognize that there is a risk
of overfitting, which could result in overly optimistic performance metrics. To ensure
that the reported accuracy and F1 scores reflected the model’s true predictive capability
rather than its ability to overfit to the training dataset, we used feature selection and
regularization techniques to further prevent the model from memorizing noise in the
training data, as well as five-fold cross-validation during model development, which
ensured that the model’s performance was evaluated across multiple subsets of the data,
thereby reducing the likelihood of overfitting by providing a more credible estimate of the
model’s generalizability.

Hyperparameter tuning was performed to optimize the performance of each machine
learning algorithm. The goal was to identify the best combination of hyperparameters that
maximized the models’ generalization ability on unseen data.

For each algorithm, the specific hyperparameters and their ranges were as follows:
linear regression: no hyperparameters to tune (default implementation); LR: regularization
parameter (C), solver, and penalty; RF: number of trees (n_estimators), maximum depth
of trees (max_depth), and minimum samples per leaf (min_samples_leaf); GB: learning
rate, number of boosting stages (n_estimators), and maximum depth of trees (max_depth);
SVR: regularization parameter (C), kernel type, and kernel coefficient (gamma); KNN:
number of neighbors (n_neighbors), distance metric, and weight function; DT: maximum
depth of trees (max_depth), minimum samples per leaf (min_samples_leaf), and criterion;
XGBoost: learning rate, number of boosting stages (n_estimators), and maximum depth of
trees (max_depth).

The performance of each hyperparameter combination was evaluated using five-fold
cross-validation with accuracy as the primary metric. The combination yielding the highest
average accuracy across folds was selected as the optimal configuration. Cross-validation
was used to assess the generalization performance of the models and to mitigate overfitting.
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By partitioning the dataset into five folds, we ensured that each fold was used exactly once
as a validation set while the remaining folds were used for training.

The dataset was randomly split into five folds of equal size. For each fold, the model
was trained on four folds and validated on the remaining fold. This process was repeated
five times, with each fold serving as the validation set once. The performance metrics (e.g.,
accuracy, precision, recall) were averaged across all folds to obtain a robust estimate of
model performance.

The different models were trained after the treatment and modified based on the
results. Furthermore, the best models were applied again to save in another folder. The
same dataset with the same data structure and features was reuploaded again to test the
prediction models, and these models were compared based on the performance metrics;
finally, the best model was selected based on performance metrics, and the success model
was named by the “EADB Model” by the researchers, as presented in Figure 6.
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• Linear regression was used to predict the dependent (y) from the independent (X)
variables, and this prediction assumes that the two variables have an association such
as a linear association [59].

• SVR was identified as part of the regression techniques and was considered a super-
vised learning algorithm. SVR can be predicted from training and test datasets, and
its aim is to identify a function that is as flat as possible while also matching all the
training data. It works to find the fit line and decrease the error or gap between the
predicted and actual value [60].

• LR was utilized, which compares the data to a logistic function; it makes predictions
about the chance that an incidence will occur, and the results fall between 0 and 1 [58].

• DT is a flowchart-like tree; each branch in the tree is considered a rule, and each leaf
is considered an outcome for each rule. This algorithm works by selecting the best
feature or attribute from all available features and considering the results of maximum
information. This algorithm did not rely on a straightforward formula, and each path
from the root to the leaf represents a DT. The paths classify the new entry or instance
determined previously and based on the feature values in the original tree until the
leaf node is built [61].

• RF was one of the classification algorithms and can be used for regression tasks. This
algorithm works similarly to the DT algorithm and generates many trees in the training
phase and testing phase, which results in stable results; for this reason, RF was also
used in cross-validation. No equation was used in regression [61]. Its purpose is
to construct a model that uses basic decision rules deduced from data attributes to
forecast the value of a target variable. It divides the data according to specified criteria;
there is no set formula for this, but instead, metrics, such as information gain [62].

• KNN is a basic instance-based learning method. A new instance is categorized us-
ing similarity metrics (such as distance functions). A query point is allocated to
the data class with the greatest number of representatives among its nearest neigh-
bors, and classification is determined by a simple majority vote of each point nearest
neighbors [63].

• GB is an ensemble technique where new models are created, which predict the resid-
uals or errors of prior models, and then added together in a stage-wise fashion. It
combines the weak learners and creates a strong predictive model and is used to
minimize errors for the new model; “boosting” means that each model corrects the
errors of the previous model, the key idea is to set the target outcomes for this new
model to minimize the loss function [64].

• XGBoost is an efficient implementation of a gradient-boosting framework. This algo-
rithm uses a GB framework at the core but is optimized for speed and performance.
Like GB, it involves creating new models that predict the residuals of prior models.
It has unique features like handling missing data, regularization to avoid overfitting,
and tree pruning [65].

3.6. Perfromance Evaluation

The performance evaluation included three types of evaluation: (1) performance met-
rics, (2) confidence intervals, and (3) significance tests. The performance metrics accuracy,
precision, recall, F1 score, AUC, FPR, and TPR were utilized to measure the performance of
each experiment to develop and to compare the performances of the developed models. In
addition, a confusion matrix for TPR and FPR was used to compare the predictive values
with the targeted values in this research, in order to test the performance of the prediction
models [66–68] as presented in Table 5.
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Table 5. Performance metric equations.

Metrics Name Equations
True Positive Rate/Recall (TPR) TPR = TP/(TP + FN)
False Positive Rate (FPR) FPR = FP/(TN + FP)
Precision Precision = TP/(TP + FP)

F-measure (F1 score) F1 score = 2/(Recall−1 + Precision−1)
Area Under the Curve (AUC) AUC = ½. ∑in = 1 (fi + 1 − fi). (ti + 1 + ti)
Accuracy Accuracy = TP + TN/(TP + TN + FP + FN)

Mean Square Error (MSE) MSE = 1/n ∑ (y − y)2

Best Value = 0, Worst Value = +∞

R-Squared

R2 = 1 − (SSE/SSyy)
Where SSE = ∑ (y − y∧)2

SSyy = ∑ (y − y−)2

Best Value = +1, Worst Value = −∞

Finally, significance tests were utilized to determine whether the observed differences
in performance metrics were statistically significant. We performed the following tests:
(a) Wilcoxon Signed-Rank Test: A non-parametric test used to compare two algorithms on
the same dataset(s). This test was chosen because it does not assume normality and is robust
to small sample sizes. (b) Friedman Test: A non-parametric test used to compare more
than two algorithms across multiple datasets or cross-validation folds. If the Friedman test
indicated significant differences, we performed a post hoc Nemenyi test to identify which
specific pairs of algorithms differed.

Table 6 illustrates the confusion matrix with the actual and predicted probabilities. It
shows that the matrix has four probabilities, which may be true positive (TP), false positive
(FP), false negative (FN), and true negative (TN), in addition to the equation used in the
prediction model and the metrics equation, with the meanings of the symbols used in those
equations staying the same [58].

Table 6. Confusion matrix.

Predicted—Positive Predicted—Negative
Actual—Positive True Positive (TP) False Negative (FN)

Actual—Negative False Positive (FP) True Negative (TN)

4. Results
This section presents the experimental results of the prediction models for pressure

injury, identifies the distribution of the risk factors into the training and testing datasets,
and presents the developed models’ findings.

4.1. Risk Factors Training and Testing Distribution

The risk factors for the prediction models of pressure injury were distributed into the
training and testing datasets, as presented in Table 7.
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Table 7. Risk factor distribution into training and testing datasets.

Factors/Features Sub-Factors/Features Training Dataset Testing Dataset

Accreditation Status Accredited 359 patients (75.6%) 116 patients (24.4%)
Not Accredited 499 patients (78.6%) 136 patients (21.4%)

Department Category Open Units 516 patients (87.9%) 138 patients (21.1%)
Intensive Units 342 patients (73.5%) 114 patients (26.5%)

Gender Male 501 patients (77.9%) 142 patients (22.1%)
Female 357 patients (76.4%) 110 patients (23.4%)

Age Category
Elderly (65 years and over) 330 patients (76.0%) 104 patients (24.0%)

Adults (25–64 years) 459 patients (78.6%) 125 patients (21.4%)
Young Adult (18–24 years) 69 patients (75.0%) 23 patients (25.0%)

Performed Operation Yes 415 patients (76.7%) 126 patients (23.4%)
No 443 patients (77.9%) 126 patients (22.1%)

Anesthesia Type

General 256 patients (74.2%) 89 patients (25.8%)
Local Anesthesia 134 patients (82.2%) 29 patients (17.8%)

Spinal 13 patients (0.50%) 5 patients (0.77%)
Sedation 11 patients (0.42%) 2 patients (0.31%)
Epidural 1 patient (0.04%) 0 patients (0.00%)

CSE 0 patients (0.00%) 1 patient (0.15%)

Mechanical Ventilator No 762 patients (29.42%) 216 patients (33.33%)
Yes 96 patients (3.71%) 36 patients (5.56%)

Braden Scale Level Low Risk 500 patients (19.31%) 138 patients (21.30%)
High Risk 358 patients (13.82%) 114 patients (17.59%)

Subscale/Moisture

Rarely Moist 393 patients (15.17%) 117 patients (18.06%)
Occasionally Moist 348 patients (13.44%) 102 patients (15.74%)
Constantly Moist 54 patients (2.08%) 12 patients (1.85%)

Very Moist 63 patients (2.43%) 21 patients (3.24%)

Subscale/Activity
Walks Frequently 371 patients (14.32%) 116 patients (17.90%)

Bed Fast 158 patients (6.10%) 41 patients (6.33%)
Walks Occasionally 291 patients (11.24%) 83 patients (12.81%)

Chair Fast 38 patients (1.47%) 12 patients (1.85%)

Sensory Perception
No Impairment 462 patients (17.84%) 127 patients (19.60%)

Completely Limited 70 patients (2.70%) 16 patients (2.47%)
Slightly Limited 284 patients (10.97%) 98 patients (15.12%)

Very Limited 42 patients (1.62%) 11 patients (1.70%)

Mobility
No Limitations 409 patients (15.79%) 111 patients (17.13%)

Completely Immobile 74 patients (2.86%) 15 patients (2.31%)
Slightly Limited 137 patients (5.29%) 53 patients (8.18%)

Very Limited 238 patients (9.19%) 73 patients (11.27%)

Nutrition Statistics

Excellent 383 patients (14.79%) 115 patients (17.75%)
Adequate 347 patients (13.40%) 108 patients (16.67%)

Probably Inadequate 78 patients (3.01%) 22 patients (3.40%)
Very Poor 36 patients (1.39%) 4 patients (0.62%)

Inadequate 14 patients (0.54%) 3 patients (0.46%)

Friction And Shear

No Potential or Apparent 686 patients (26.49%) 199 patients (30.71%)
Friction and Shear 101 patients (3.90%) 21 patients (3.24%)

Problem 67 patients (2.59%) 31 patients (4.78%)
Potential Problem 2 patients (0.08%) 0 patients (0.00%)

No Apparent Problem 2 patients (0.08%) 1 patient (0.15%)

Pressure Injury Type No Pressure Injury 437 patients (16.88%) 118 patients (18.21%)
Hospital-Acquired 421 patients (16.25%) 134 patients (20.68%)

4.2. Prediction Models of Pressure Injury

Model evaluation was conducted based on the different performance metrics; the
following sections discuss the developed models and experiments in detail.

4.2.1. Model (A)—Potential Factors That Had a High Correlation with Pressure Injury

The potential factors that correlated with pressure injury were age, diagnosis, op-
eration, anesthesia type, accreditation status, department category, Braden scale level,
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pulse, systolic BP, length of stay, medications (Adrenaline, Norepinephrine), and lab tests
(Alb, WBC, protein). The RF model had the best algorithms in this model for most of the
performance metrics, followed by gradient boost and DT. Furthermore, these algorithms
were compared using ROC curves, which were used to highlight the results of the models
between FPR and TPR and show that the algorithms showed strong performance in com-
parison with the chance line (0.05), favoring RF algorithms, which had a close to perfect
performance; for RF, the AUC for the ROC curve was one, as presented in Figure 7.
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4.2.2. Model (B)—Potential Factors with Significant Statistical Tests for Pressure Injury

The potential factors that correlated with pressure injury were gender, age, diagnosis,
operation name, anesthesia type, anesthesia duration/hours, operation duration/hours,
accreditation status, department category, Braden scale level, systolic BP, diastolic BP,
temperature, pulse, length of stay, mechanical ventilator, sensory perception, moisture,
activity, mobility, nutrition, friction and shear, lab tests (albumin, bilirubin (D), bilirubin (T),
BUN, CRP, creatinine, Hb, uric acid, and WBC), and medications (Adrenalin, Nitroglycerin,
and Norepinephrine). The RF model had the best algorithms in this model, along with
performance metrics. Furthermore, these algorithms were compared using ROC curves,
which were used to highlight the results of the model between FPR and TPR; the algorithms
showed a strong performance in comparison with the chance line (0.05), favoring the RF
and GB algorithms which showed close to perfect performance as their AUC for the ROC
curve was 1, as presented in Figure 8.
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4.2.3. Model (C)—Potential Factors with Feature Importance Related to Pressure Injury

The potential factors that had feature importance with pressure injury were gender,
length of stay, hospital name, accreditation status, department category, diagnosis, oper-
ation name, sensory perception, moisture, activity, mobility, nutrition, friction and shear,
laboratory test (albumin), temperature, Braden scale level, Braden score, and medications
(Budicort and Vancomycin). The RF model had the best algorithms in this model, along
with performance metrics. Furthermore, these algorithms were compared in using ROC
curves, which were used to highlight the results of the model between FPR and TPR,
and the algorithms showed a bad performance in comparison with the chance line (0.05),
favoring the KNN algorithm where the AUC for the ROC curve was 1, as presented in
Figure 9.

4.2.4. Model (D)—Potential Factors with a High Correlation Without Braden Scale Level

The potential factors that had a high correlation with pressure injury were age, mois-
ture, activity, length of stay, systolic BP, and albumin. These potential factors were used to
predict pressure injury by eight machine learning algorithms to find the best model and
reliable model results. The RF algorithm was the best algorithm in the model, with strong
performance metrics among all the algorithms. Furthermore, these algorithms were com-
pared using ROC curves, which were used to highlight the results of the model between
FPR and TPR, and the algorithms showed a strong performance in comparison with the
chance line (0.05), favoring RF algorithm which showed close to perfect performance as the
AUC for the ROC curve was 1, as presented in Figure 10.
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The performance metrics among all algorithms showed excellent performance; the ac-
curacy was (0.969–0.814), precision (0.964–0.679), recall (0.926–0.552), F1 score (0.942–0.555),
AUC (0.926–0.552), FPR (0.429–0.155), and TPR was (0.807–0.361). The best model was RF,
in which the accuracy was 0.962, precision was 0.942, recall was 0.922, F1 was 0.931, AUC
was 0.922, FPR was 0.155, and TPR was 0.782, as presents in Table 8. Finally, the predictive
variables were age, moisture, activity, LOS, systolic BP, and Alb.

Furthermore, the study findings indicate that the data from medical records can predict
PI and help nurses identify patients at risk of PI earlier, which improves the quality of care
and promotes patient safety. Furthermore, the study found that predictive factors in the
developed model for predicting pressure injuries are not included in the traditional tools
used routinely by nurses for assessing pressure injuries.

Table 8. Comparison of performance metrics of ML algorithms—all models.

Classification Regression

Algorithm Model Accuracy Precision Recall F1 AUC FPR TPR MSE R2

LR A 0.964 0.95 0.919 0.934 0.919 0.348 0.907 NA NA
B 0.956 0.958 0.886 0.917 0.886 0.277 0.92 NA NA
C 0.828 0.649 0.514 0.486 0.514 0.58 0.4 NA NA
D 0.936 0.903 0.864 0.882 0.864 0.262 0.859 NA NA

RF A 0.988 0.98 0.978 0.979 0.978 0.028 0.88 NA NA
B 0.992 0.985 0.986 0.985 0.986 0.048 0.882 NA NA
C 0.838 0.718 0.584 0.601 0.584 0.318 0.317 NA NA
D 0.987 0.977 0.979 0.978 0.979 0.023 0.833 NA NA
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Table 8. Cont.

Classification Regression

Algorithm Model Accuracy Precision Recall F1 AUC FPR TPR MSE R2

GB A 0.976 0.96 0.953 0.957 0.953 0.116 0.802 NA NA
B 0.981 0.968 0.967 0.967 0.967 0.126 0.876 NA NA
C 0.713 0.498 0.498 0.498 0.498 0.631 0.396 NA NA
D 0.967 0.939 0.946 0.942 0.946 0.048 0.742 NA NA

KNN A 0.966 0.947 0.93 0.938 0.93 0.162 0.753 NA NA
B 0.961 0.951 0.909 0.928 0.909 0.158 0.721 NA NA
C 0.84 0.834 0.541 0.534 0.541 0.153 0.231 NA NA
D 0.959 0.93 0.924 0.927 0.924 0.163 0.738 NA NA

DT A 0.984 0.974 0.968 0.971 0.968 0.336 0.648 NA NA
B 0.987 0.977 0.979 0.978 0.979 0.336 0.655 NA NA
C 0.828 0.677 0.592 0.609 0.592 0.35 0.411 NA NA
D 0.985 0.977 0.969 0.973 0.969 0.254 0.728 NA NA

XGBoost A 0.926 0.93 0.799 0.847 0.799 0.063 0.763 NA NA
B 0.939 0.946 0.833 0.877 0.833 0.044 0.787 NA NA
C 0.834 0.696 0.583 0.6 0.583 0.542 0.411 NA NA
D 0.939 0.928 0.851 0.883 0.851 0.178 0.79 NA NA

SVR A NA NA NA NA NA NA NA 0.027 0.81
B NA NA NA NA NA NA NA 0.019 0.869
C NA NA NA NA NA NA NA 0.08 0.438
D NA NA NA NA NA NA NA 0.031 0.782

Linear A NA NA NA NA NA NA NA 0.036 0.748
B NA NA NA NA NA NA NA 0.033 0.769
C NA NA NA NA NA NA NA 0.191 −0.34
D NA NA NA NA NA NA NA 0.058 0.591

LR: logistic regression; SVR: support vector regression; RF: random forest; DT: decision tree; GB: gradient boosting;
XGBoost: extreme gradient boosting; KNN: K-nearest neighbors; NA: not applicable; AUC: area under curve;
TPR: true positive rate; FPR: false positive rate; F1: F1 score; R2: R squared; MSE: mean square error.
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4.2.5. Statistical Comparison of Algorithms

Accuracy—model A, model B, and model D: These models exhibited identical ac-
curacies across all cross-validation folds, resulting in constant differences (zero standard
deviation). As a result, the statistical tests comparing these models were skipped. Com-
pared to model A, model B, and model D, model C showed no significant difference in
accuracy (p-value = 0.0625 for all comparisons). However, its p-values were close to the
significance threshold (0.05), suggesting a trend that may warrant further investigation
with a larger dataset. For confidence intervals, the 95% confidence intervals for accuracy
were as follows: model A: (0.965, 0.969); model B: (0.967, 0.971); model C: (0.812, 0.816); and
model D: (0.960, 0.964).

Precision: Model A vs. model C showed a significant difference (p-value = 0.012),
model B vs. model C showed s significant difference (p-value = 0.012), and model C vs.
model D showed a significant difference (p-value = 0.012). For the confidence intervals, the
95% confidence intervals for precision were as follows: model A: (0.955, 0.959); model B:
(0.962, 0.966); model C: (0.677, 0.681); and model D: (0.940, 0.944).

4.2.6. Results of Cross-Validation

For the confidence intervals, we calculated 95% confidence intervals for each perfor-
mance metric using bootstrapping. Bootstrapping is a resampling technique that estimates
the variability of a metric by repeatedly sampling the data with replacement. This provides
a robust measure of uncertainty in the performance estimates. The results of the five-fold
cross-validation, including the average performance metrics and their standard deviations,
are presented in Table 9.

Table 9. Cross-validation results for each model and algorithm.

Model Algorithm Accuracy Standard Deviation Optimal Hyperparameters

Model A

Linear 0.744 0.021 Default
LR 0.962 0.004 C = 1.0, solver = ‘lbfgs’
RF 0.962 0.008 n_estimators = 100, max_depth = 10
GB 0.964 0.005 learning_rate = 0.1, n_estimators = 200

SVR 0.769 0.021 C = 1.0, kernel = ‘rbf’, gamma = 0.1
KNN 0.956 0.006 n_neighbors = 5

DT 0.945 0.013 max_depth = 5
XGBoost 0.964 0.009 learning_rate = 0.1, n_estimators = 200

Model B

Linear 0.759 0.009 Default
LR 0.960 0.005 C = 1.0, solver = ‘lbfgs’
RF 0.968 0.002 n_estimators = 100, max_depth = 10
GB 0.969 0.003 learning_rate = 0.1, n_estimators = 200

SVR 0.757 0.026 C = 1.0, kernel = ‘rbf’, gamma = 0.1
KNN 0.954 0.006 n_neighbors = 5

DT 0.960 0.007 max_depth = 5
XGBoost 0.968 0.007 learning_rate = 0.1, n_estimators = 200

Model C

Linear 0.766 0.008 Default
LR 0.960 0.003 C = 1.0, solver = ‘lbfgs’
RF 0.971 0.005 n_estimators = 100, max_depth = 10
GB 0.969 0.004 learning_rate = 0.1, n_estimators = 200

SVR 0.778 0.027 C = 1.0, kernel = ‘rbf’, gamma = 0.1
KNN 0.961 0.006 n_neighbors = 5

DT 0.962 0.007 max_depth = 5
XGBoost 0.968 0.003 learning_rate = 0.1, n_estimators = 200
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Table 9. Cont.

Model Algorithm Accuracy Standard Deviation Optimal Hyperparameters

Model D

Linear 0.588 0.033 Default
LR 0.938 0.006 C = 1.0, solver = ‘lbfgs’
RF 0.952 0.004 n_estimators = 100, max_depth = 10
GB 0.953 0.006 learning_rate = 0.1, n_estimators = 200

SVR 0.706 0.022 C = 1.0, kernel = ‘rbf’, gamma = 0.1
KNN 0.949 0.007 n_neighbors = 5

DT 0.943 0.006 max_depth = 5
XGBoost 0.950 0.007 learning_rate = 0.1, n_estimators = 200

LR: logistic regression; SVR: support vector regression; RF: random forest; DT: decision tree; GB: gradient boosting;
XGBoost: extreme gradient boosting; KNN: K-nearest neighbors; max: maximum; C: regularization parameter;
n: number; lbfgs: limited-memory Broyden–Fletcher–Goldfarb–Shanno; rbf: radial basis function.

5. Discussion
This section presents a discussion of the findings with related studies conducted

previously, with an explanation of the findings by the researchers from a Palestinian point
of view. The discussion presents the interpretation of the results and the model comparison.

The proposed models had different factors (features) that were used in each model,
and the developed models were measured and evaluated by standard performance metrics
for both types of algorithms (classifications and regression tasks). The results of model (A),
model (B), and model (D) are considered good, and there was a strong performance by the
three models based on their performance metrics.

The averages of each performance metric for model (A) were as follows: accuracy was
0.967, precision was 0.957, recall was 0.924, F1 was 0.938, AUC was 0.924, FPR was 0.176,
and TPR was 0.792. For model (B), they were as follows: accuracy was 0.969, precision was
0.964, recall was 0.926, F1 score was 0.942, AUC was 0.926, FPR was 0.165, and TPR was
0.807. For model (C), they were as follows: accuracy was 0.814, precision was 0.679, recall
was 0.552, F1 score was 0.555, AUC was 0.552, FPR was 0.429, and TPR was 0.361. For
model (D), they were as follows: accuracy was 0.962, precision was 0.942, recall was 0.922,
F1 score was 0.931, AUC was 0.922, FPR was 0.155, and TPR was 0.782, as is presented in
Table 10.

Table 10. Performance metrics for developed models.

Model Accuracy Precision Recall F1 AUC FPR TPR

Model A 0.967 0.957 0.924 0.938 0.924 0.176 0.792

Model B 0.969 0.964 0.926 0.942 0.926 0.165 0.807

Model C 0.814 0.679 0.552 0.555 0.552 0.429 0.361

Model D 0.962 0.942 0.922 0.931 0.922 0.155 0.782

Model (A) predicts PI with 12 predictive risk factors and 3 biomarkers, as follows:
gender, age, diagnosis, operation name, anesthesia type, anesthesia duration/hours, opera-
tion duration/hours, accreditation status, department category, Braden scale, systolic BP,
diastolic BP, temperature, pulse, LOS, mechanical ventilator, sensory perception, moisture,
activity, mobility, nutrition, friction and shear, Alb, bilirubin (D), bilirubin (T), (BUN), CRP,
creatinine, Hb, uric acid, WBC, Adrenalin, Nitroglycerin, and Norepinephrine. Model (B)
predicts PI with 24 predictive risk factors and 9 biomarkers, as follows: age, diagnosis,
operation, anesthesia type, accreditation status, department category, Braden scale, pulse,
systolic BP, LOS, Adrenaline, Norepinephrine, Alb, WBC, and protein. Model (D) predicts
PI with five predictive risk factors, age, moisture, activity, LOS, and systolic (BP), and one
biomarker, Alb.
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Model (D)’s performance is high, and its performance metrics are as follows: accuracy:
0.962; precision: 0.942; recall: 0.922; F1 score: 0.931; AUC: 0.922; FPR: 0.155; and TPR: 0.782.
The slight differences between the three models in the performance metrics are as follows:
accuracy: (model A: 0.967; model B: 0.969; model D: 0.962); precision: (model A: 0.957;
model B: 0.964; model D: 0.942); recall: (model A: 0.924; model B: 0.926; model D: 0.922); F1:
(model A: 0.938; model B: 0.942; model D: 0.931); AUC: (model A: 0.924; model B: 0.926;
model D: 0.922); FPR: (model A: 0.176; model B: 0.165; model D: 0.155); and TPR: (model A:
0.792; model B: 0.807; model D: 0.782); as presented in Table 7.

Based on the comparison between performance metrics among all the models, the
data show that model (B) has the best performance metrics, followed by model (A) and
model (D), and that the RF algorithm was the best in the three models.

The major issue in the comparison is that model (B) utilized double the features of
model (A) to predict pressure injury with an advanced setup, considering factors such as
a mechanical ventilator that may not be used in many patients’ conditions, especially for
patients treated in open units. In addition, there were nine biomarkers utilized in model
(B), triple the biomarkers utilized in model (A), which means that they were not captured
by some of the patients. This is relevant due to the models’ efficiency, that has become a
major consideration in the healthcare industry.

Model (D), in comparison with the other two models (A) and (B), has a reasonable
number of features, with only six predictive risk factors, and does not use the medications
used in the two previous models, which overlook the patients who were not in intensive
units and did not need any vasopressor medications. Also, this model did not rely on the
department category (open or intensive units) or the accreditation status of the hospital,
which makes it more fit for all types of hospitals.

In addition, this model did not require many biomarkers to predict pressure injury
and only utilized the Alb level, which made this model efficient and more practical. Finally,
model (D) did not rely on the screening results of the traditional screening tool (Braden
scale) as (A and B) did, which makes this model more flexible with hospitals that use other
tools for assessing the patients, or do not use structured screening tools.

Having taken all these considerations into account, and given the excellent perfor-
mance metrics in all models (A, B, and D), with slight differences, which were not significant,
we recommend model (D), with the following performance metrics: accuracy: 0.962; pre-
cision: 0.942; recall: 0.922; F1: 0.931; AUC: 0.922; FPR: 0.155; and TPR: 0.782. It will
be more effective and practical in the real world and can be utilized by in all hospitals’
adult settings.

The identical performance of models A, B, and D across all folds suggests that these
models are highly similar in terms of predictive performance. This could be due to the use
of similar algorithms, hyperparameters, or the limited variability in the dataset. Future
work could explore larger or more diverse datasets to further differentiate these models.
In contrast, model C showed significantly lower precision compared to the other models,
indicating that it may produce more false positives. However, there was no significant
difference in accuracy, suggesting that model C compensated for its lower precision with
higher recall or other performance aspects. Although the differences in accuracy were not
statistically significant, its p-values were close to the significance threshold. This trend
suggests that with a larger dataset or more cross-validation folds, significant differences
might emerge.

The rigorous hyperparameter tuning process ensured that each algorithm was opti-
mized for the given dataset. This step was critical to achieving competitive performance
and ensuring fair comparisons between the algorithms. The use of five-fold cross-validation
provided a robust estimate of model performance and minimized the risk of overfitting.
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The small standard deviations observed in the cross-validation results (e.g., ±0.002 for
accuracy) indicate that the models are stable and generalize well to unseen data.

Model (D) shows excellent performance metrics among all eight algorithms; for the
classification algorithms, all performance metrics were high, such as accuracy, precision,
recall, F1 score, and AUC. For regression algorithms, the model had a good fit, and the
average difference of the squares between the predicted and actual values was low, with an
MSE of 0.031. The R2 was about 78% of the variations in the targeted variable (pressure
injury) detected by the potential factors in the developed model (features). In this model,
the RF algorithms had the best overall performance metrics in comparison with the other
classification algorithms, and SVR was the best of the regression algorithms.

Finally, the results of RF as the best algorithm are compatible with the findings of [69],
a meta-analysis study which found that RF was the best algorithm to predict pressure injury,
with high performance metrics; with [39], which found that RF was the best algorithm,
with a high accuracy; with [50], which found that RF was the best algorithm among all
algorithms to predict pressure injury; and with [70], a systematic review study which
found that LR and RF were the best algorithms to predict pressure injury. Moreover, [55], a
systematic review study, also found that RF was the best out of the 16 reviewed algorithms
to predict pressure injury, and study [46] found that RF was the best algorithm, with
excellent performance metrics.

This study utilized a novel fused multi-channel prediction model and utilized eight
machine learning algorithms, which makes these models unique and more comprehensive.
The number of algorithms and prediction models discussed in some previous studies
was four algorithms, such as in [39] which utilized LR, RF, SVR, and NN. Other studies
utilized 6 algorithms, such as [69], a meta-analysis study which reviewed 25 studies, and
the maximum number was 6 algorithms (DT, diagnostic odds ratio, LR, NN, RF, and SVR).
Other studies ranged from one to six algorithms, such as [55], a systematic reviewed study,
and those algorithms were LR, DT, SVR, KNN, MLP, and XGBoost. Another study used
only two algorithms, [46], which utilized (RF and LR).

This study also developed model (D), which can predict pressure injury among
different departments or different specialties in adult hospital settings, which is con-
sidered an added value to the knowledge. Previous prediction models developed
in the previous literature were designated to certain departments such as the ICU or
CCU [20,22,41–43,45,48,49,51,53,71]; or to certain diseases, such as [47], which developed a
model for oncology, and [52], which developed a model for cardiac surgery; or for certain
patient groups, such as [10,46] which developed models for surgical patients.

While the study provides a brief overview of previous research, a more detailed com-
parison of the “EADB” model with state-of-the-art models in similar contexts is essential
to highlight its competitive edge. Existing models for pressure injury prediction often
rely on traditional risk assessment tools or focus narrowly on a limited set of features,
which can limit their accuracy and adaptability. In contrast, the “EADB” model integrates a
comprehensive set of predictors, including risk factors, biomarkers, and incident reports,
leveraging the strengths of eight machine learning algorithms to achieve high predictive
performance. Compared to models reported in prior studies, the “EADB” model benefits
from a balanced dataset and incorporates advanced techniques for mitigating biases and
optimizing accuracy. Future work will include benchmarking the model against leading
approaches in the literature, emphasizing its potential to outperform conventional methods
in terms of predictive accuracy, generalizability, and clinical utility.
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6. Conclusions
This research provides evidence of the feasibility of developing multi-fused prediction

models to predict pressure injury for hospitalized patients by utilizing the potential risk
factors and biomarkers that are routinely available in electronic patient medical records.
The developed prediction models had strong performance metrics, which means that the
final model is reliable and valid with different approaches to validation. These models
recruit multiple potential factors (features) that can detect pressure injury in different levels
of care and at different rates of severity or acuity of patient conditions. The approach
used in developing a prediction model of pressure injury provides evidence that for the
prediction of pressure injury utilizing different potential factors it is hard for healthcare
providers and nurses to follow the predictive risk factors daily. This provides valuable
assistance to nurses, which will be reflected in the quality of nursing care provided to the
patients and maintain patient safety through preventing or reducing the risk of pressure
injury for patients. Finally, the predictive model of pressure injury, based on the novelty of
this new approach and on its strong performance metrics in predicting pressure injury, is
considered a promising tool for the future.

The prediction model of pressure injury will assist nurses and healthcare providers in
enhancing the quality of care and improving patient experience and satisfaction through
minimizing harm that may affect patients’ quality of life and the care process. The rapid
progression in utilizing electronic medical records in the healthcare industry is leading
healthcare facilities to gain the technological benefits of using electronic medical records
and look for additional features that can be generated from these technologies. These issues
need to be taken into consideration as an area for improvement to enhance the quality of
data in electronic patient medical records, which would be reflected in the quality of care,
improve the continuity of care, and ensure that patient medical records and HIS will help
hospitals in their mission and goals.

Moreover, based on the results obtained from this research, it is recommended that
nursing scientists and nursing practitioners need to upgrade their methods of assessing
pressure injuries. This upgrade should include the factors that were not assessed in
traditional tools, such as (age, length of stay, systolic blood pressure, and albumin levels),
and consider the findings of the different prediction models of pressure injury.

Using a prediction model which utilizes machine learning approaches for clinical
services addresses several challenges that relate to usability and reliability in real practice;
in addition to this is the question of how to integrate with electronic health record systems
to support real-time clinical decision making without disrupting established workflows.
Moreover, the model’s interpretability and transparency are crucial to fostering trust and
acceptance among healthcare providers, who may be unfamiliar with machine learning.
Furthermore, the ethical issues including data confidentiality and compliance with local
regulations must be addressed to maintain patient information. Finally, implementing
such models requires full awareness for users to maximize their potential impact and
the benefits from using such models. These considerations highlight the importance of
aligning technological advancements with practical clinical concerns to improve patient
care outcomes effectively.

7. Limitations of the Study
No study is without limitations; the first one for this study is the quality of data docu-

mented by the healthcare providers in the medical records. This challenge was overcome
through data cleaning and data preparation before building the model to achieve the best
accuracy and make sure that the data are valid and reliable. The second one is related to
the fact that the findings of the study are based on three hospital records in Palestine; the
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developed prediction model (EADB) utilized data from three hospitals is Palestine, which
provides an added value to the existing practices and a valuable contribution to knowledge
and to the local Palestinian healthcare system. However, using this model in the other
populations or different demographics requires careful considerations, such as different
electronic health record systems, demographics, and the fact that other risk factors may
affect the performance of the developed model when applied in another context. Further
studies are needed to validate the models in different health systems, different electronic
health record systems, and diverse populations to ensure the applicability and reliability of
the developed model in various contexts.
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