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ABSTRACT 
 

Phishing attacks are one of the trending cyber-attacks that apply socially engineered messages that are 

communicated to people from professional hackers aiming at fooling users to reveal their sensitive 

information, the most popular communication channel to those messages is through users’ emails. This 

paper presents an intelligent classification model for detecting phishing emails using knowledge discovery, 

data mining and text processing techniques. This paper introduces the concept of phishing terms weighting 

which evaluates the weight of phishing terms in each email. The pre-processing phase is enhanced by 

applying text stemming and WordNet ontology to enrich the model with word synonyms. The model applied 

the knowledge discovery procedures using five popular classification algorithms and achieved a notable 

enhancement in classification accuracy; 99.1% accuracy was achieved using the Random Forest algorithm 

and 98.4% using J48, which is –to our knowledge- the highest accuracy rate for an accredited data set. 

This paper also presents a comparative study with similar proposed classification techniques. 
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1. INTRODUCTION 
 

The recent advances in web and mobile technology attracted most commercial institutions to offer 

their services online, including banks, stocks and ecommerce providers. As people increasingly 

rely on Internet services to carry out their transactions, Internet fraud becomes a great threat to 

people’s privacy and safety. Phishing is one of the main types of Internet fraud; which relies on 

fooling users to share or declare their private information (including passwords and credit card 

numbers), phishing could be defined as a cyber-attack that communicates socially-engineered 

messages to humans through electronic communication channels (email, SMS, phone call) in 

order to persuade them to do certain actions (enter credentials, credit card number, …) for the 

attackers benefit; such actions could be persuading an e-commerce web site user to enter his 

credentials to a fake web site (managed by the attacker) similar to the original website and then 

the attacker uses them to impersonate the user. In order to persuade the victim user to login to 

such a fake website, the socially engineered message draws an illusion to the user that he needs to 

perform such action, such as warning the user about account suspension or that the website admin 

is requesting him to reset his password [1]. 
 

Phishing attacks employ email messages and websites that are designed in a professional manner 

to be similar to emails and websites from legitimate institutions and organizations (usually the 

user is a customer for those organizations), to persuade users into disclosing their personal or 

financial information. The attacker can then use collected sensitive user information for his 

benefit. Users can be tricked into disclosing their information either by providing sensitive 

information via a web form, replying to spoofed emails, or downloading and installing Trojans, 

which search users’ computers or monitor users’ online activities in order to get information. 
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Phishing attacks have steadily increased to match the growth of electronic commerce, recently 

taking on epidemic proportions; the Anti Phishing Work Group (APWG) report of 2015 [2] 

declared that the total number of unique phishing sites detected from Quarter1 through Quarter3 

of 2015 was 630,494, while The number of unique phishing reports submitted to APWG from 

quarter 1 through quarter3 was 1,033,698. According to a recent study from Google [3], 45% of 

phishing websites fooled their target victims into declaring their passwords, and got their 

password changed by the attacker within 30 minutes after their accounts were hijacked. The 

attackers also exploited the victims’ accounts in fooling other people in the victim’s contact list 

through communicating with them using the hijacked accounts; the study concluded that those 

people are 36 times more likely to be hijacked when the attackers used the victim’s account to 

communicate with them, and this is an expected result as the communication is received from a 

trusted account. 
 

Many researchers have studied the phishing problem and proposed a variety of solutions to 

combat phishing attacks. The first category of proposed solutions works on the principle of 

detecting phishing attacks and warning the user or preventing him from taking actions that could 

result in compromising his private data, latest research proposals in this category include [4] [5] 

[6] [7] [8] [9]. The second category of proposed phishing solutions rely on securing the login 

process by adding a second authentication factor such that stealing the user’s credentials is not 

enough for an attacker to compromise the victim’s account unless he also possesses the second 

authentication factor, those proposals include [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]. 
 

Our focus in this paper is to build an intelligent classifier at the email level that is capable of 

detecting phishing emails as an early stage in the phishing combating process; we believe that 

detecting phishing emails can make the internet users more secure by eliminating those emails 

and not relying on the users’ vigilance to protect them from phishing attacks; many studies 

concluded that depending on human factors is not a preferred option for combating phishing 

attacks; especially for advanced and well prepared phishing attacks that are continuously adapting 

themselves to known defence mechanisms [20] [21]. 
 

Our approach for detecting phishing emails applies the knowledge discovery model and data 

mining techniques to build an intelligent model that learns from existing training dataset of both 

ham and phishing emails, the model will extract and reduce the important features that contribute 

to building a set of classifiers from which the best classifier is chosen. We built a java program 

that extracts a set of features from the email header and body, those features are then augmented 

with a weighted term frequency that is applied after performing linguistic processing of the email 

extracted terms. After that a set of data mining algorithms are applied to the extracted features to 

decide the algorithm with best results.   
 

2. RELATED WORK 
 

In the study [8] the authors proposed a model that utilizes 23 hybrid features of the email header 

and body extracted from about 10000 emails divided equally between ham and spam emails, their 

model applied J48 classification algorithm to classify phishing and legitimate emails and 

concluded with an accuracy of 98.11% and false positive rate of 0.53%. 

 

Another study [22] applied a two-phase classification model of emails; in the first phase a set of 

classification algorithms (C5.0, Naive Bayes, SVM, Linear Regression and K-Nearest 

Neighbours) are used to classify legitimate and phishing emails, common evaluation metrics are 

used to evaluate each algorithm including accuracy, precision, recall and F-score, the algorithm 

with best classification results was C5.0 with an average accuracy rate of 97.15%, average 

precision of 98.56%, average recall of 95.64% and average F-score of 97.08%. in the second 

phase, the emails that were classified as legitimate in the first phase were input to an ensemble 

classifier. 
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The authors in [23] proposed an email classification model that exploits 23 keywords extracted 

from the email body, the proposed model was tested using a set of classification algorithms, 

including multilayer perceptron, decision trees, support sector machine, probabilistic neural net, 

genetic programming, and logistic regression. The best classification result was achieved using 

genetic programming with a classification accuracy of 98.12%. 

 

The study [24] applies the Bayesian classifier for phishing email detection, evaluated in terms of 

accuracy, error, time, precision and recall. The model resulted in accuracy of 96.46%. 

 

The authors in [25] applied Support Vector Machine classifier to classify emails using a set of 9 

structure-based and behaviour-based features. The model achieved 97.25% accuracy in results, 

however its weakness is in its relatively small training dataset (1000 emails with 50% spam and 

50% ham). 

 

The authors in [26] proposed an email classification algorithm by integrating Bayesian Classifier 

and phishing URLs detection using Decision Tree C4.5, their approach achieved 95.54 % 

accuracy, which is better than the accuracy of 94.86% that was achieved using Bayesian 

classifier. 

 

The study in [27] used Random Forest and Partial Decision Tree algorithm for spam email 

classification, the authors applied a set of feature selection methods in the pre-processing step 

including Chi-square and Information gain, they achieved accuracy of 96.181% with Random 

Forest and 95.093% with Part. 

 

The authors in [28] proposed a browser knowledge-based compound approach for detecting 

phishing attacks, the proposed model analyses web URLs using parsing and utilizes a set of 

maintained knowledge bases which store the previously visited URLs and previously detected 

phishing URLs. The experimental results indicated 96.94% accuracy in detecting phishing URLs 

with a little compromise in degrading the browser speed. 

 

3. PROPOSED MODEL 

 
The proposed approach for phishing email classification employs the model of Knowledge 

Discovery (KD) and data mining for building an intelligent email classifier that is able to classify 

a new email message as a legitimate or spam; the proposed model is built by applying the 

iterative steps of KD to identify and extract useful features from a training email data set, the 

features are then fed to a group of data mining algorithms to identify the best classifier. 

 

The proposed model for email classification utilizes linguistic processing techniques and 

ontologies to enhance the similarity between emails with similar semantic term meaning, also the 

principle of term document frequency is applied in weighting the phishing terms in each email 

such that emails phishing terms weighting helps in discriminating phishing from legitimate 

emails. The proposed model also reduced the number of features used in the classification process 

into 16 features only; which enhances the classification performance and efficiency and 

minimizes the noise of including many features and hence improves the classification accuracy. 

These enhancements and are discussed in detail in the following subsections. 

 

3.1 Knowledge Discovery Model 

 
Knowledge discovery is the process of extracting or discovering patterns from data, the extracted 

patterns should be novel, valid, useful and understandable [29]. The KD process is carried out 

using a set of iterative steps as depicted in figure 1. The steps are initiated by understanding the 
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problem and the data, followed by a data pre-processing phase to prepare it for the data mining 

step through which the target knowledge is discovered, evaluated and then presented as a useful 

and easy to use information.  

 

The proposed model architecture is depicted in figure 2 and explained subsequently. 

 

3.2 Data Collection 

 
The first step in building the proposed phishing email classifier is choosing the suitable training 

data set which is a real sample of existing emails that consists of both phishing and legitimate 

emails (also known as spam and ham emails). The training data set will be used to discover 

potentially predictive relationships that will serve as building blocks in the classifier. Our training 

data set consists of 10538 emails including 5940 ham emails from spam assassin project [30] and 

4598 spam emails from Nazario phishing corpus [31]. 

 

3.3 Data Pre-processing and features extraction 

 
In this step the emails in the training data set are prepared and filtered such that they can be 

transformed into a data format that is easily and effectively processed in subsequent steps of 

building the classifier. The emails in our chosen training data set are available in plain text format 

which needs to be pre-processed and transformed into EML format (Microsoft Outlook Express 

file extension) that is interoperable with the java mail package that will be used to extract the 

email features. Figure 3 depicts the main actions that take place in the pre-processing step. 

 

 
 

Figure 1: Knowledge Discovery Process [32] 
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The proposed mail classification model utilizes a set of 16 extracted features from the email 

message header and body, the extracted features are explained in table 1. 

 

The process of extracting the features set from each email utilizes a java program that reads each 

email in the training data set, parses its contents and computes the value for each feature 

according to its description, after extracting the feature set for each email it is written into an 

ARFF (Attribute-Relation File Format) file that will be fed later into the classifier building 

process. 

 

 

 
 

Figure 2: The proposed model architecture 

 

We used the Information Gain (IG) measure to specify the usefulness of each feature in our 

features set in discriminating between the spam and ham classes, the IG value for each attribute 

tells us how important a given feature of the feature vectors is. The IG for each feature is depicted 

in table1. We found that the features listed in table 1 has the highest IG value which indicates that 

they will have an important contribution in deciding the email class as phishing or legitimate.  

 

Figure 4 depicts the IG values of our proposed feature set. 

 

The pre-processing phase consists of a set of steps that utilizes the email header, body and text 

features to extract the features that contribute to the classification process, some features are 

extracted from the URL links in the email subject and body, such as Hexadecimal URLs,  

Domains Count, TextLinkDifference, Dots Count, Images as URL and IP URLs. Other features 

are extracted from the email body such as HTML Body feature, the rest of features are extracted 

after processing the email subject and body text, this text processing step includes the following 

tasks: 

• Text parsing, tokenization and stemming: the email subject and body text is parsed and 

tokenized into tokens, if the email body is HTML-formatted then the HTML tags are 

parsed to extract the text and identify URLs. Moreover, if the email contains attachments, 

they will also be parsed and tokenized. Each token in the extracted token is normalized 

such that morphological and in flexional endings of the tokens are removed, this 

stemming process is carried out using Porter Stemmer [33].  

• Stop words removal: in this step, extremely common words which would appear to be of 

little value are removed from the extracted tokens, common stop words include the 

tokens “the”,”then”,”he”,…etc. this step helps in reducing the similarities between emails 

and improves the performance of the proposed model specially in executing later steps. 
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• Semantic text processing: in this step, each token in the email is augmented with its 

conceptually-related words from the WordNet ontology [34] using the synonymy and 

hyponymy relationships, this step helps identifying semantic relationships between tokens 

in different email messages and thus shortening the distance between feature vectors that 

contain close proximity to one another, and hence enhances the classification accuracy. 

 

 
 

Figure 3: Pre-processing Phase 

 

• Phishing terms weighting: in this step a set of phishing terms is built using the phishing 

emails in the training dataset. The phishing terms are those who have highest term 

frequency in the phishing data set. For example, the terms “Account” and “Please” 

existed in the phishing corpus 3384 and 3149 times respectively. This high frequency of 

terms indicates their importance in identifying phishing emails.  
 

The proposed preprocessing model extracts the set of phishing terms- denoted by PT- from the set 

of phishing emails in the training data set, the phishing terms should also be not included in the 

legitimate emails training data set. The PT data set includes all terms whose document frequency 

(the number of phishing emails that contain the phishing term) is greater than 0. 
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Each term in the PT set is given a weight denoted by TW, and given by:  

 

Where TDFi is the term document frequency for term i in the PT data set, N is the number of 

phishing terms in the PT data. Table 2 depicts a sample of phishing terms and their respective 

document frequency and weight. 

 

The Phishing terms weight feature for each email is the sum of the weights of the phishing terms 

in that email, and given by , where n is the number of phishing terms in the email. The 

value of this feature indicates the weight of the phishing terms in that email. 

 
Table 1: Email extracted features 

 

Feature Description Data Type Information 

Gain 

HTML Body Checks if the email body contains 

HTML content. 

Number 

{0,1} 

0.681 

Hexadecimal URLs The number of URLs consisting of 

hexadecimal characters in the email. 

Number 0.652 

Domains Count The number of domains in the URLs 

that exists in the email. 

Number 0.652 

TextLinkDifference The number of URLs whose label is 

different from its anchor in the 

email. 

Number 0.649 

Dots Count The maximum number of dots that 

exist in a URL in the email. 

Number 0.497 

Email Contains 

Account Term 

Checks if the email contains the 

term “Account” 

Number 

{0,1} 

0.493 

Email Contains Dear 

Term 

Checks if the email contains the 

term “Dear” 

Number 

{0,1} 

0.375 

Images as URL The number of image URLs. Number 0.298 

IP URLs The number of URLs whose domain 

is specified as an IP address. 

Number 0.297 

Email Contains 

PayPal Term 

Checks if the email contains the 

term “PayPal” 

Number 

{0,1} 

0.296 

Email Contains 

Login Term 

Checks if the email contains the 

term “Login” 

Number 

{0,1} 

0.250 

Email Contains Bank 

Term 

Checks if the email contains the 

term “Bank” 

Number 

{0,1} 

0.213 

Phishing Terms 

Weight 

A weight that is assigned to each 

email and represents the sum of 

weights of the phishing terms that 

exists in that email 

Number 0.210 

Email Contains 

Verify Term 

Checks if the email contains the 

term “Verify” 

Number 

{0,1} 

0.207 

Email Contains 

Agree Term 

Checks if the email contains the 

term “Agree” 

Number 

{0,1} 

0.206 

Email Contains 

Suspend Term 

Checks if the email contains the 

term “Suspend” 

Number 

{0,1} 

0.205 
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Figure 4: Features IG values 

 
Table 2: Sample phishing terms weights 

 

Phishing Term TDF TW 

Account 3384 2.256 

Click 2550 1.7 

PayPal 1172 0.781 

Bank 1168 0.779 

Passcode 20 0.013 

 

The email’s phishing terms weight feature could be calculated using the following pseudocode: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N is the number of phishing terms in the phishing 

emails corpus. 

T is the set of phishing terms in the email. 

TW is an array that contains each phishing term weight. 

W =0; //the phishing terms weight for the email. 

 

For t in T loop 

 W+ = TWt , where TWt is the weight of phishing term t. 

End loop; 

W=W/N; 
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3.4 Classification Model Building 

 
After extracting the set of features from the training data set, we tested the classification accuracy 

of our model using five well known classification techniques; J48, Naïve Bayes, Support Vector 

Machine (SVM), Multi-Layer Perceptron and Random Forest. Before exploring the classification 

results for each algorithm, a brief summary of each algorithm’s technique is presented as follows: 

 

J48 algorithm: is the java implementation of the C4.5 classification algorithm, it uses a set of 

training data (S) consisting of already classified samples in the form S=s1, s2, …, sn. Each sample 

s in the training data set consists of k-dimensional vector (x1, x2, …., xk), where xk represents the 

feature value of that sample. The algorithm constructs a decision tree from the training data set, 

where each node of the tree is realized by the feature that most effectively splits its set of samples 

into subsets using the information gain value. The main advantages of decision trees are their 

simplicity to explain and interpret and take into account the features relationships and 

interactions, however they do not support online learning and require rebuilding the tree each 

time new samples exists. 

 

Naïve Bayes Classifier: this classifier uses the Bayes rule of conditional probability and makes 

use of all the data features, and analyses them individually on the assumption that they are equally 

important and independent of each other. The advantages of this classifier is its simplicity and 

quick convergence, however it cannot learn about the interactions and relationships between the 

features in each sample. 

 

SVM: Support Vector Machine is a supervised machine learning algorithm that is mostly used for 

classification tasks in addition to regression tasks. In SVM each data item is plot as a point in n-

dimensional space (n is the number of features in each sample in the training set) and the 

algorithm mission is to find the best hyper-plane that divides the two classes. SVM classifies non-

linearly separable data by transforming them into a higher dimensional space (using a kernel 

function) where a separating hyperspace exists. SVM is known for its accuracy and its ability to 

classify data that is not linearly separable. However, SVM is memory-intensive and hard to 

interpret. 

 

Multi-Layer Perceptron (MLP): is a feed forward artificial neural network that consists multi 

layers (usually 3) of neurons, each neuron is considered a processing unit that is activated using 

an activation function. MLP is a supervised machine learning method in which the network is 

trained using a labelled training data set, a trained MLP will be able to map a set of input data 

(email features in our case) into a set of outputs (email class). 

 

Random Forest: is decision tree based classification algorithm that is suitable for large data sets; 

it constructs a set of decision trees at training phase such that each tree operates on a predefined 

number of attributes chosen randomly. The classification process takes place by a majority vote 

of the results from each individual tree. Random Forest is trained on different parts of the training 

data set and aims at solving the problem of overfitting that is usually faced when using decision 

trees. 

 

3.5 Performance metrics 

 
In order to evaluate our proposed phishing email classification model using different 

classification techniques, we applied a set of evaluation metrics for each algorithm: 
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• True Positive Rate (TP): the percentage of phishing emails in the training data set that 

were correctly classified by the algorithm. Formally, if the number of phishing emails in 

the data set is denoted by P and the number of correctly classified phishing emails by the 

algorithm is denoted by Np, then 

 

                                                                                                 (1) 

 

• True Negative Rate (TN): the percentage of legitimate emails that were correctly 

classified as legitimate by the algorithm. If we denote the number of legitimate emails 

that were correctly classified as legitimate by NL and the total number of legitimate 

emails as L, then 

 

                                                                                               (2) 

 

• False Positive Rate (FP): is the percentage of legitimate emails that were incorrectly 

classified by the algorithm as phishing emails. If we denote the number of legitimate 

emails that were incorrectly classified as phishing by Nf, and the total number of 

legitimate emails as L, then 

 

                                                                                               (3) 

 

• False Negative Rate (FN): the number of phishing emails that were incorrectly classified 

as legitimate by the algorithm. If we donate the number of phishing emails that were 

classified as legitimate by the algorithm by Npl and the total number of phishing emails in 

the data set is denoted by P, then 

 

                                                                                               (4) 

 

• Precision: measures the exactness of the classifier; i.e. what percentage of emails that the 

classifier labeled as phishing are actually phishing emails, and it is given by: 

 

                                                                                    (5) 

 

• Recall: measures the completeness of the classifier results; i.e. what percentage of 

phishing emails did the classifier label as phishing, and is given by: 

 

                                                                                   (6) 

• F-measure: also known as F-score, and is defined as the harmonic mean of Precision and 

Recall, and given by: 

 

                                                           (7) 

 

• Receiver Operating Characteristic (ROC) Area: a metric that demonstrates the 

accuracy of a binary classifier by plotting TP against FP at various threshold values. 
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4. RESULTS AND DISCUSSION 

 
This section presents the results that the proposed classification model achieved by applying the 

five proposed classification algorithms to the features extracted from the data set of 10538 emails 

including 5940 ham emails from spam assassin project [30] and 4598 spam emails from Nazario 

phishing corpus [31]. The generated features were fed to the five classifiers, namely J48, Bayes 

Net, SVM, MLP and Random Forest. To avoid overfitting, we used 10-fold cross validation 

technique which uses 0.9 of the training data set as data for training the algorithm and the 

remaining 0.1 of training data set for testing purposes, and repeat this division of the data set for 

training and testing for 10 times. The experiments were conducted using the open source WEKA 

data mining software [35]. 

 

The results were evaluated using the performance metrics discussed in the previous section. Table 

3 depicts the weighted average of classification results for each of the algorithms. 

 

The results show that our model achieves high accuracy rates in classifying phishing emails, and 

outperforms similar proposed classification schemes as we will explain in the next section, thanks 

to the proposed pre-processing phase and feature reduction and evaluation process in the 

proposed model. The inclusion of features with high information gain values yielded a high 

influence in improving the classification results. A comparison of the different algorithms results 

is plotted in figure 5. 

 

The best results were achieved by the Random Forest classification algorithm, due to their usage 

of tree ensembles that are capable of dealing with non-linear features that are correlated to each 

other, and its bagging mechanism enables it to handle very well high dimensional spaces as well 

as large number of training examples which fits to our proposed model. 

 
Table 3: Classification Algorithms Accuracy results (Weighted Average) 

 

              Metrics 

Algorithm  

TP FP Precision Recall F-Measure ROC 

Area 

J48 0.984 0.019 0.984 0.984 0.984 0.9863 

Bayes Net 0.954 0.066 0.947 0.945 0.945 0.9717 

SVM 0.969 0.039 0.97 0.969 0.969 0.9650 

Random Forest 0.991 0.011 0.991 0.991 0.991 0.9988 

MLP 0.977 0.026 0.977 0.977 0.977 0.9870 
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Figure 5: Classification results 

 

The Random Forests algorithm builds a set of different decision trees for classification; to classify 

a new mail from the input dataset, Random Forest put the new email’s features vector down each 

of the trees in the forest, and then a classification is obtained from each of the trees, and a 

classification with the most votes is returned by the algorithm. The ROC area diagram in figure 6 

shows the accuracy of the random forest algorithm in separating phishing emails form legitimate 

ones. 

 

We empirically evaluated the best number of trees to be used by random forest, the algorithm 

performed best when we set the number of trees to 30. The algorithm achieved 0.988 accuracy 

and 0.014 FP rate when the number of trees was set to 10. Increasing the number of trees above 

30 did not add a notable improvement to the classification results. 

 

The J48 decision tree classifier achieved the second best classification results with 0.984 TP rate 

and 0.019 FP rate, and yielded a small enhancement over similar studies that implemented the 

same algorithms for phishing email detection such as the study in [8]. The J48 algorithm achieved 

0.9863 ROC area accuracy as shown in figure 7. 

 

The third best result was achieved using the MLP classifier with TP rate of 0.977 and 0.026 FP 

rate. The MLP achieved a ROC area of 0.987 as shown in figure 8. SVM and Bayes Net 

classifiers yielded a lower percentage of classification accuracy using the proposed feature set. 
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Figure 6: Random Forest ROC Area 

 
 

 
 

Figure 7: J48 ROC Area 



International Journal of Network Security & Its Applications (IJNSA) Vol.8, No.4, July 2016 

68 

 
 

Figure 8: MLP ROC Area 

 

5. COMPARATIVE ANALYSIS 

 
A set of proposed studies are found in the literature of phishing email detection using data mining 

techniques, in this section we compare our proposed model with a set of previously proposed 

models for phishing detection. Table 4 summarizes a set of seven previous related works along 

with the classification algorithm(s) used and the accuracy of the classification results, the results 

are visualized in figure 9. 
 

Table 4: Comparison of our approach with previous work 

 
Paper 

Reference 

Classification Algorithms Accuracy 

[36] Random Forest 0.97 

[37] J48 + SVM 0.97 

[38] SVM 0.75 

[39] decision trees, random forest, multi-layer perceptron, Naïve Bayes 

and SVM 

0.99 

[22] C5.0 0.97 

[40] Bayes Net 0.96 

[8] Random Forest, LibSVM, Bayes Net, SMO, Logistic Regression and 

NaiveBayes. 

0.9811 

Our 

Approach 

J48 , Bayes Net, SVM, Random Forest and Multi-Layer Perceptron. 0.991 
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Figure 9: comparison of our approach accuracy with related work. 

 

The study in [36] used a feature vector of 47 features extracted from the same data sets of Nazario 

[31]and Spam Assassin corpus [30], using Random Forest algorithm for training the classification 

model. Their model achieved 0.97 accuracy. Our model outperforms their model in accuracy rate 

with less feature set. 

 

The study in [37] applied both J48 and SVM for classifying emails using a feature set of 30 

features and yielded an accuracy rate of 0.97, our approach outperforms this result using the same 

classification algorithm J48 with a classification accuracy of 0.984. 

 

The study in [38] applied the SVM algorithm only on a feature set 25 features extracted from the 

email content only and achieved a low accuracy rate of 0.75, our model outperforms this result 

due to extracting features not only from the email body, but also from the header and also using 

the concept of phishing terms frequency. 
 

The study in [39] achieved high rate of accuracy in classifying phishing emails, it used a group of 

classification algorithms including Random Forest, Multi-Layer Perceptron, SVM and decision 

trees. However, this study was built on a small and not verified phishing data set. 

 

The study in [22] achieved accuracy rate of 0.97 using the C 5 decision tree algorithm on a 22 

features from two data sets of Ham, Spam emails. This result degraded to 0.84 when a third data 

set of Phishing emails was added. 

 

The study in [40] achieved 0.96 accuracy using Bayes Net algorithm with seven hybrid features. 

However, this study was built over a small data set of 1645 emails, and when the data set was 

increased to 4594 emails the accuracy degraded to 0.92, and this is an indicator that their model 

has not been generalized. 
 

The study in [8] achieved an accuracy rate of 0.9811 and FP rate of 0.53 using the J48 algorithm 

and 23 hybrid features. Our approach enhances this result to accuracy of 0.984 using less features 

but with FP rate of 0.019 using J48, and accuracy of 0.991 and FP rate of 0.011using Random 

Forest. We believe that including only features that have IG values over the data set and 

introducing the feature of phishing terms weight for each email contributed to this enhancement 

in accuracy. 
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6. CONCLUSION 

 
This paper proposed a classification model for emails into phishing or legitimate by applying the 

knowledge discovery and data mining techniques, the model was built using an intelligent pre-

processing phase that extracts a set of features from the emails header, body and terms frequency. 

 

The features are enriched with WordNet ontology and text pre-processing technique of stemming 

to enhance the similarity between emails messages of a specific class. The extracted features were 

evaluated using the Information Gain measure and only those who have an information gain 

contribution were added to the feature set. Two accredited data sets were used in training and 

testing of the proposed model and 10-fold cross validation technique was used in the training and 

testing processes to overcome the overfitting problem. The model was experimented using five 

popular data mining algorithms; Random Forest, J48, SVM, MLP and Bayes Net. The 

classification results achieved were encouraging and enhanced the classification accuracy so far 

registered in similar previously published models. 

 

As future work, the proposed model could be further enhanced by developing an adaptive 

mechanism to reflect the contributions of analysing new emails term frequency and applying 

enhanced linguistic processing techniques to strengthen the similarity between phishing emails 

terms such that a better classification results are obtained. 
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