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Abstract: Crowded event entrances could threaten the comfort and safety of pedestrians, especially
when some pedestrians push others or use gaps in crowds to gain faster access to an event. Studying
and understanding pushing dynamics leads to designing and building more comfortable and safe
entrances. Researchers—to understand pushing dynamics—observe and analyze recorded videos to
manually identify when and where pushing behavior occurs. Despite the accuracy of the manual
method, it can still be time-consuming, tedious, and hard to identify pushing behavior in some
scenarios. In this article, we propose a hybrid deep learning and visualization framework that aims to
assist researchers in automatically identifying pushing behavior in videos. The proposed framework
comprises two main components to generate motion information maps: (i) deep optical flow and
wheel visualization; (ii) A combination of an EfficientNet-B0-based classifier and a false reduction
algorithm for detecting pushing behavior at the video patch level. In addition to the framework, we
present a new patch-based approach to enlarge the data and alleviate the class imbalance problem
in small-scale pushing behavior datasets. Experimental results (using real-world ground truth of
pushing behavior videos) demonstrate that the proposed framework achieves an 86% accuracy rate.
Moreover, the EfficientNet-B0-based classifier outperforms baseline CNN-based classifiers in terms
of accuracy.

Keywords: deep learning; convolutional neural network; EfficientNet-B0-based classifier; image
classification; crowd behavior analysis; pushing behavior detection; motion information maps; deep
optical flow

1. Introduction

In entrances of large-scale events, pedestrians either follow the social norm of queuing
or force some pushing behavior to gain faster access to the events [1]. Pushing behavior
in this context is an unfair strategy that some pedestrians use to move quickly and enter
an event faster. This behavior involves pushing others and moving forward quickly by
using one’s arms, shoulders, elbows, or upper body, as well as using gaps among crowds
to overtake and gain faster access [2,3]. Pushing behavior, as opposed to queuing be-
havior, can increase the density of crowds [4]. Consequently, such behavior may lead to
threatening the comfort and safety of pedestrians, resulting in dangerous situations [5].
Thus, understanding pushing behavior, what causes it, and the consequences are crucial,
especially when designing and constructing comfortable and safe entrances [1,6]. Conven-
tionally, researchers have attempted to study pushing behavior manually by observing and
identifying pushing cases among video recordings of crowded events. For instance, Lüger-
ing et al. [3] proposed a rating system on forward motions in crowds to understand when,
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where, and why pushing behavior appears. The system relies on two trained observers to
classify the behaviors of pedestrians over time in a video (the behavior is classified into
either pushing or non-pushing categories). In this context, each category includes two gra-
dations: mild and strong for pushing, and falling behind and just walking for non-pushing.
For more details on this system, we refer the reader to [3]. To carry out their tasks, the
observers analyzed top-view video recordings using pedestrian trajectory data and PeTrack
software [7]. However, this manual rating procedure is time-consuming, tedious, and re-
quires a lot of effort by observers, making it hard to identify pushing behavior, specifically
when the number of videos and pedestrians in each video increase [3]. Consequently, there
is a pressing demand to develop an automatic and reliable framework to identify when
and where pushing behavior appears in videos. This article’s main motivation is to help
social psychologists and event managers identify pushing behavior in videos. However,
automatic pushing behavior detection is highly challenging due to several factors, includ-
ing diversity in pushing behavior, the high similarity and overlap between pushing and
non-pushing behaviors, and the high density of crowds at event entrances.

According to a computer vision perspective, automatic pushing behavior detection
belongs to the video-based abnormal human behavior detection field [8]. Several human
behaviors have been addressed, including walking in the wrong direction [9], running
away [10], sudden people grouping or dispersing [11], human falls [12], suspicious behavior,
violent acts [13], abnormal crowds [14], hitting, pushing, and kicking [15]. It is worth
highlighting that pushing as defined in [15] is different from the “pushing behavior” term
in this article. In [15], pushing is a strategy used for fighting, and the scene contains only
up to four persons. To the best of our knowledge, no previous studies have automatically
identified pushing behavior for faster access from videos.

With the rapid development in deep learning, CNN has achieved remarkable perfor-
mance in animal [16,17] and human [13,18] behavior detection. The main advantage of
CNN is that it directly learns the useful features and classification from data without any
human effort [19]. However, CNN requires a large training dataset to build an accurate clas-
sifier [20,21]. Unfortunately, this requirement is unavailable in most human behaviors. To
alleviate this limitation, several studies have used a combination of CNN and handcrafted
feature descriptors [22,23]. The hybrid-based approaches use descriptors to extract valu-
able information. Then, CNN automatically models abnormal behavior from the extracted
information [24,25]. Since labeled data for pushing behavior are scarce, the hybrid-based
approaches could be more suitable for automatic pushing behavior detection. Unfortu-
nately, the existing approaches are inefficient for pushing behavior detection [22]. Their
main limitations are: (1) their descriptors do not work well to extract accurate information
from dense crowds due to occlusions, or they cannot extract the needed information for
pushing behavior representation [22,26]; (2) Some used CNN architectures are not efficient
enough to deal with the high similarity between pushing and non-pushing behaviors (high
inter-class similarity) and the increased diversity in pushing behavior (intra-class variance),
leading to misclassification [25,26].

To address the above limitations, we propose a hybrid deep learning and visualization
framework for automatically detecting pushing behavior at the patch level in videos.
The proposed framework exploits video recordings of crowded entrances captured by
a top-view static camera, and comprises two main components: (1) motion information
extraction aims to generate motion information maps (MIMs) from the input video. A
MIM is an image that contains useful information for pushing behavior representation.
This component divides each MIM into several MIM patches, making it easier to see
where pedestrians are pushing. For this purpose, recurrent all-pairs field transforms
(RAFT) [27] (one of the newest and most promising deep optical flow methods) and the
wheel visualization method [28,29] are combined; (2) The pushing patch annotation adapts
the EfficientNet-B0-based CNN architecture (the EfficientNet-B0-based CNN [30] is an
effective and simple architecture in the EfficientNet family proposed by Google in 2019,
achieving the highest accuracy in the ImageNet dataset [31]) to build a robust classifier,
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which aims to select the relevant features from the MIM patches and label them into
pushing and non-pushing categories. We utilized a false reduction algorithm to enhance
the classifier’s predictions. Finally, the component outputs pushing the annotated video
showed when and where the pushing behaviors appeared.

We summarize the main contributions of this article as follows:

1. To the best of our knowledge, we proposed the first framework dedicated to automat-
ically detecting when and where pushing occurs in videos.

2. An integrated EfficientNet-B0-based CNN, RAFT, and wheel visualization within a
unique framework for pushing behavior detection.

3. A new patch-based approach to enlarge the data and alleviate the class imbalance
problem in the used video recording datasets.

4. To the best of our knowledge, we created the first publicly available dataset to serve
this field of research.

5. A false reduction algorithm to improve the accuracy of the proposed framework.

The rest of this paper is organized as follows: Section 2 reviews the related work of
video-based abnormal human behavior detection. In Section 3, we introduce the proposed
framework. A detailed description of dataset preparation is given in Section 4. Section 5
discusses experimental results and comparisons. Finally, the conclusion and future work
are summarized in Section 6.

2. Related Works

Existing video-based abnormal human behavior detection methods can be generally
classified into object-based and holistic-based approaches [25,26]. Object-based methods
consider the crowd as an aggregation of several pedestrians and rely on detecting and track-
ing each pedestrian to define abnormal behavior [32]. Due to occlusions, these approaches
face difficulties in dense crowds [33,34]. Alternatively, holistic-based approaches deal with
crowds as single entities. Thus, they analyze the crowd itself to extract useful information
and detect abnormal behaviors [24,25,34]. In this section, we briefly review some holistic-
based approaches related to the context of this research. Specifically, the approaches are
based on CNN or a hybrid of CNN and handcrafted feature descriptors.

Tay et al. [35] presented a CNN-based approach to detect abnormal actions from
videos. The authors trained the CNN on normal and abnormal behaviors to learn the
features and classification. As mentioned before, this type of approach requires a large
dataset with normal and abnormal behaviors. To address the lack of large datasets with
normal and abnormal behaviors, some researchers applied a one-class classifier using
datasets of normal behaviors. Obtaining or preparing a dataset with only normal behaviors
is easier than a dataset with normal and abnormal behaviors [34,36]. The main idea of the
one-class classifier is to learn from the normal behaviors only; to define a class boundary
between the normal and not defined (abnormal) classes. Sabokrou et al. [36] utilized a
new pre-trained CNN to extract the motion and appearance information from crowded
scenes. Then, they used a one-class Gaussian distribution to build the classifier from
datasets with normal behaviors. In the same way, the authors of [34,37] used datasets of
normal behaviors to develop their one-class classifiers. Xu et al. used a convolutional
variational autoencoder to extract features in [34]. Then, multiple Gaussian models were
employed to predict abnormal behavior. Ref. [37] adopted a pre-trained CNN model for
feature extraction and a one-class support vector machines to predict abnormal behavior.
In another work, Ilyas et al. [24] used pre-trained CNN along with a gradient sum of the
frame difference to extract relevant features. Afterward, three support vector machines
were trained on normal behavior to detect abnormal behavior. In general, the one-class
classifier is popular when the abnormal behavior or target behavior class is rare or not
well-defined [38]. In contrast, the pushing behavior is well-defined and not rare, especially
in high-density and competitive scenarios. Moreover, this type of classifier considers the
new normal behavior as abnormal.
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In order to overcome the drawback of CNN-based approaches and one-class classifier
approaches, several studies used a hybrid-based approach with a multi-class classifier.
Duman et al. [22] employed the classical Farnebäck optical flow method [23] and CNN to
identify abnormal behavior. The authors used Farnebäck and CNN to extract the direction
and speed information. Then, they applied a convolutional long short-term memory
network for building the classifier. In [39], the authors used a histogram of gradient and
CNN to extract the relevant features, while a least-square support vector was employed
for classification. In a similar line of the hybrid approaches, Direkoglu [25] combined the
Lucas–Kanade optical flow method and CNN to extract the relevant features and detect
“escape and panic behaviors”. Almazroey et al. [26] employed mainly a Lucas–Kanade
optical flow, pre-trained CNN, and feature selection (neighborhood component analysis)
methods to select the relevant features. The authors then applied a support vector machine
to generate a trained classifier. Zhou et al. [40] presented a CNN method for detecting and
localizing anomalous activities. The study integrated optical flow with a CNN for feature
extraction and it used a CNN for the classification task.

In summary, hybrid-based approaches have shown better accuracy than CNN-based
approaches on small datasets [41]. Unfortunately, the reviewed hybrid-based approaches
are inefficient for dense crowds and pushing behavior detection due to (1) their feature
extraction parts being inefficient for dense crowds; (2) The reviewed approaches cannot
extract all of the required information for pushing behavior representation; (3) Their
classifiers are not efficient enough toward pushing behavior detection. Hence, the proposed
framework combines the power of supervised EfficientNet-B0-based CNN, RAFT, and
wheel visualization methods to solve the above limitations. The RAFT method works
well for estimating optical flow vectors from dense crowds. Moreover, the integration of
RAFT and wheel visualization helps to simultaneously extract the needed information
for pushing behavior representation. Finally, the adapted EfficientNet-B0-based binary
classifier detects distinct features from the extracted information and identifies pushing
behavior at the patch level.

3. The Proposed Framework

This section describes the proposed framework for automatic pushing behavior detec-
tion at the video patch level. As shown in Figure 1, there are two main components: motion
information extraction and pushing patches annotation. The first component extracts
motion information from input video recordings, which is further exploited by the pushing
patch annotation component to detect and localize pushing behavior, producing pushing
annotated video. The following subsections discuss both components in more detail.
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Figure 1. The architecture of the proposed automatic deep learning framework. n and m are two rows
and three columns, respectively, for patching. Clip size s is 12 frames. MIM: motion information
map. P: patch sequence. L: a matrix of all patches labels. L′: an updated L by false reduction
algorithm. V: the input video. ROI: region of interest (entrance area). angle: the rotation angle of the
input video.

3.1. Motion Information Extraction

This component employs RAFT and wheel visualization to estimate and visualize the
crowd motion from the input video at the patch level. The component has two modules,
a deep optical flow estimator and a MIM patch generator.

The deep optical flow estimator relies on RAFT to calculate the optical flow vectors for
all pixels between two frames. RAFT was introduced in 2020; it is a promising approach
for dense crowds because it reduces the effect of occlusions on optical flow estimation [27].
RAFT is based on a composition of CNN and recurrent neural network architectures.
Moreover, RAFT has strong cross-dataset generalization and its pre-trained weights are
publicly available. For additional information about RAFT, we refer the reader to [27].
This module is based on the RAFT architecture with its pre-trained weights along with
three inputs, which are a video of crowded event entrances, the rotation angle of the input
video, and the region of interest (ROI) coordinates. To apply RAFT, firstly, we determine
the bounding box of the entrance area (ROI) in the input video V. This process is based
on user-defined left–top and bottom–right coordinates of the ROI in the pixel unit. Then,
we extract the frame sequence F = { ft | t = 1, 2, 3, . . . , T} with ROI only from V, where
ft ∈ Rw×h×3, w and h are the ft width and height, respectively, 3 is the number of channels,
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t is the order of the frame f in V, and T is the total number of frames in V. After that, we
rotate the frames (based on the user-defined angle) in F to meet the baseline direction of
the crowd flow that is used in the classifier, which is from left to right. The rotation process
is essential to improve the classifier accuracy because the classifier will be built by training
the adapted EfficientNet-B0 on the crowd flow from left to right. Next, we construct from F
the sequence of clips C = {ci | i = 1, 2, 3, . . . } and ci is defined as

ci = { f(i−1)×(s−1)+1, f(i−1)×(s−1)+2, . . . , f(i−1)×(s−1)+s}, (1)

where s is the clip size. Finally, RAFT is applied on ci, to calculate the dense displacement
field di between f(i−1)×(s−1)+1 and f(i−1)×(s−1)+s. The output of RAFT of each pixel location
〈x, y〉 in ci is a vector, as shown in.

〈u〈x,y〉, v〈x,y〉〉ci = RAFT(〈x, y〉ci ), (2)

where u and v are horizontal and vertical displacements of a pixel at the 〈x, y〉 location in ci,
respectively. This means di is a matrix of the vector values for the entire ci, as described in

di =

{
〈u〈x,y〉, v〈x,y〉〉ci

}(w,h)

(x,y)=(1,1)
(3)

In summary, di is the output of this module and will act as the input of the MIM patch
generator module.

The second module, the MIM patch generator, employs the wheel visualization to infer
the motion information from each di. Firstly, the wheel visualization calculates the magni-
tude and the direction of each motion vector at each pixel 〈x, y〉 in di. Equations (4) and (5)
are used to calculate the motion direction and magnitude, respectively. Then, from the
calculated information, the wheel visualization generates MIMi, where MIMi ∈ Rw×h×3.
In MIM, the color refers to the motion direction and the intensity of the color represents the
motion magnitude or speed. Figure 2 shows the color wheel scheme (b) and an example of
MIM (MIM37) (c) that is generated from c37, whose first and last frames are f397 and f408,
respectively (a). c37 is taken from the experiment 270 [42].

θ(〈x, y〉)ci = π−1 arctan(
v〈x,y〉
u〈x,y〉

) (4)

mag(〈x, y〉)ci =
√

u2
〈x,y〉 + v2

〈x,y〉 (5)

b. Color wheel scheme.a. First (f397) and last (f408) frames for clip c37

c. MIM37 d. MIM-patches  e. Annotated frame (f397)

p1,37

p4,37 p5,37 p6,37

p2,37 p2,37

Figure 2. An illustration of two frames (experiment 270 [42]), color wheel scheme [29], MIM, MIM
patches, and annotated frame. In sub-figure (e), red boxes refer to pushing patches, while green boxes
represent non-pushing patches.
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To detect pushing behavior at the patch level, the MIM patch generator divides each
MIMi into several patches. A user-defined row (n) and column (m) are used to split MIMi
into patches {pk,i ∈ R(w/m)× (h/n)× 3 | k = 1, 2, . . . , n × m }, where k is the order of the
patch in MIMi. Afterward, each pk,i is resized to a dimension of 224× 224× 3, which is the
input size of the second component of the framework. For example, MIM37 in Figure 2c
represents an entrance with dimensions 5 × 3.4 m on the ground, and it is divided into
2 × 3 patches {pk,37 | k ≤ 6} as given in Figure 2d. These patches are equal in pixels,
whereas the area that is covered by them is not necessarily equal. The far patches from the
camera cover a larger viewing area compared to close patches; because the far-away object
has fewer pixels per m than a close object [43]. In Figure 2d, the average width and height
of the pk,37 are approximately 1.67 × 1.7 m.

In summary, the output of the motion information extraction component can be
described as P = {pk,i ∈ R224× 224× 3 | k ≤ n×m & i ≤ |C|}, and will serve as input for
the second component of the framework.

3.2. Pushing Patches Annotation

This component localizes the pushing patches in ci ∈ C, annotates the patches
in the first frame ( f(i−1)×(s−1)+1) of each ci, and stacks the annotated frame sequence
F′ = { f ′i | i = 1, 2, . . . , |C|} as a video. The Adapted EfficientNet-B0-based classifier and
false reduction algorithm are the main modules of this component. In the following, we
provide a detailed description.

The main purpose of the first module is to classify each pk,i ∈ P as pushing or non-
pushing. The module is based on EfficientNet-B0 and real-world ground truth of pushing
behavior videos. Unfortunately, the existing effective and simple EfficientNet-B0 is un-
suitable for detecting pushing behavior because its classification is not binary. However,
binary classification is required in our scenario. Therefore, we modify the classification
part in EfficientNet-B0 to support a binary classification. The module in Figure 1 shows
the architecture of the adapted EfficientNet-B0. Firstly, it executes a 3 × 3 convolution
operation on the input image with dimensions of 224 × 224 × 3. Afterwards, the next
16 mobile inverted bottleneck convolutions are used to extract the feature maps. The final
stacked feature maps ∈ R7×7× 1280, where 7 and 7 are the dimensions of each feature map,
and 1280 is the number of feature maps. The following global average pooling2D (GAP)
layer reduces the dimensions of the stacked feature maps into 1× 1× 1280. For the binary
classification, we employed a fully connected (FC) layer with a ReLU activation function
and a dropout rate of 0.5 [44] before the final FC. The final layer operates as output with a
sigmoid activation function to find the probability δ of the class of each pk,i ∈ P.

In order to generate the trained classifier, we trained the adapted EfficientNet-B0
with pushing and non-pushing MIM patches. The labeled MIM patches were extracted
from a real-world ground truth of pushing behavior videos, where the ground truth
was manually created. In Sections 4 and 5.1, we show how to prepare the labeled MIM
patches and train the classifier, respectively. Overall, after several empirical experiments
(Section 5.2), the trained classifier on MIM patches of 12 frames produces the best accuracy
results. Therefore, our framework uses 12 frames for the clip size (s). Moreover, the classifier
uses the threshold for determining the label lk,i of the input pk,i as:

lk,i =

{
1 (pushing class) if δ ≥ 0.5
0 (non-pushing class) if δ < 0.5

(6)

Finally, the output of this module can be described as L = {lk,i ∈ 0, 1 | k ≤ n×m &
i ≤ |C|} and will perform as the input of the next module.

In the second module, the false reduction algorithm aims to reduce the number of false
predictions in L, which improves the overall accuracy of the proposed framework. Compar-
ing the predictions (L) with the ground truth pushing, we notice that the time interval of



Sensors 2022, 22, 4040 8 of 25

the same behavior of each patch region could help improve the accuracy of the framework.
We assume a threshold value of 34

25 second. This value is based on visual inspection.
The example in Figure 3 visualizes the {lk,i | k ≤ 3 & i ≤ 4} on the first frame of

c1, c2, c3, and c4 in the video. Each ci represents 12
25 second. c1 (Figure 3a) contains one

false non-pushing, p2,1, while the same region of the patch in {c2, c3, c4} is true pushing
(Figure 3b–d). This means, we have two time intervals for {p2,i | i ≤ 4}. The first has
one clip (c1) (Figure 3a) with a duration of 12

25 second, which is lesser than the defined
threshold. The second time interval contains three clips ({c2, c3, c4}), with durations equal
to the threshold. Then the algorithm changes the prediction of p2,1 to “pushing”, while
it confirms the predictions of p2,2, p2,3, and p2,4. Algorithm 1 presents the pseudocode of
the false reduction algorithm. Lines 2–8 show how to reduce the false predictions of the
patches in {ci | i ≤ |c| − 2} Then, lines 9–16 recheck the first two clips (c1, c2) to discover
the false predictions that are not discovered by lines 2–8. After that, lines 17–32 focus on the
last two clips {c|C|−1, c|C|}. Finally, the updated L is stored in L′, which can be described as
L′ = {l′k,i ∈ 0, 1 | k ≤ n×m & i ≤ |C|}.

FNP

a. c1 b. c2 c. c3 d. c4

p2,1 TPp2,2 TPp2,3 TPp2,4

Figure 3. Examples of the visualized classifier predictions with ground truth pushing. The images
represent the first frames { f1, f12, f23, f34} of {c1, c2, c3, c4} in a video, respectively; the video is for
experiment 110 [42]. Red boxes: pushing patches. Green boxes: non-pushing patches. Blue circles:
ground truth pushing. FNP: false non-pushing. TP: true pushing.

After applying the false reduction algorithm, the pushing patch annotation component
based on L′ identifies the regions of pushing patches on the first frame for each ci to generate
the annotated frame sequence F′. Finally, all annotated frames are stacked as a video, which
is the final output of the proposed framework.
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Algorithm 1 False Reduction.
Input:

matrix[N, M]← L
Output:

L′

1: for i← 0, 1, . . . , N do
2: for j← 0, 1, . . . , M− 2 do

. Excepting the last two clips
3: if matrix[i, j] 6= matrix[i, j + 1] then
4: if count(matrix[i, j] in matrix[i, j + 2 to j + 4]) > 1 then
5: matrix[i, j + 1]← not matrix[i, j + 1]
6: end if
7: end if
8: end for

. Recheck the first two clips
9: if matrix[i, 0 to 2] is not identical then

10: if matrix[i, 1] is not in matrix[i, 2 to 4] then
11: matrix[i, 1]← not matrix[i, 1]
12: end if
13: if matrix[i, 0] not in matrix[i, 1 to 3] then
14: matrix[i, 0]← not matrix[i, 0]
15: end if
16: end if

. For the last two clips
17: if matrix[i, M− 1] 6= matrix[i, M− 2] then
18: if matrix[i, M− 1] 6= matrix[i, M− 3] then
19: matrix[i, M− 1]← not matrix[i, M− 1]
20: end if
21: end if
22: if matrix[i, M− 1] 6= matrix[i, M− 2] then
23: if matrix[i, M− 1] = matrix[i, M− 3] then
24: matrix[i, M− 2]← not matrix[i, M− 2]
25: end if
26: end if
27: if matrix[i, M− 1] = matrix[i, M− 2] then
28: if matrix[i, M− 1] not in matrix[i, M− 5 to M− 3] then
29: matrix[i, M− 1]← not matrix[i, M− 1]
30: matrix[i, M− 2]← not matrix[i, M− 2]
31: end if
32: end if
33: end for
34: L′ ← matrix

4. Datasets Preparation

This section prepares the required datasets for training and evaluating our classifier.
In the following, firstly, four MIM-based datasets are prepared. Then, we present a new
patch-based approach for enlarging the data and alleviating the class imbalance problem in
the MIM-based datasets. Finally, the patch-based approach is applied to the datasets.

4.1. MIM-Based Datasets Preparation

In this section, we prepare four MIM-based datasets using two clip sizes, Farnebäck
and RAFT optical flow methods. Two clip sizes (12 and 25 frames) are used to study the
impact of the period of motion on the classifier accuracy. Selecting a small clip size (s) for the
MIM sequence (MIMQs ) leads to redundant and irrelevant information, while a large size
leads to a few samples. Consequently, we chose 12 and 25 frames as the two clip sizes. The
four datasets can be described as RAFT-MIMQ12 , RAFT-MIMQ25 , Farnebäck-MIMQ12 , and
Farnebäck-MIMQ25 . For more clarity, the “RAFT-MIMQ12 ” term means that a combination
of RAFT and wheel visualization is used to generate the MIMQ12 . As mentioned before,
the EfficientNet-B0 learns from MIM sequences generated based on RAFT. Therefore, RAFT-
MIMQ12-based and RAFT-MIMQ25-based datasets play the primary role in training and
evaluating the proposed classifier. Moreover, we create Farnebäck-MIMQ12-based and
Farnebäck-MIMQ25 -based datasets to evaluate the impact of RAFT on the classifier accuracy.
The pipeline for preparing the datasets (Figure 4) is illustrated below.
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Figure 4. The pipeline of MIM-based dataset preparation.

4.1.1. Data Collection and Manual Rating

In this section, we discuss the data source and the manual rating methodology
for the datasets. Five experiments were selected from the data archive hosted by the
Forschungszentrum Jülich under CC Attribution 4.0 International license [42]. The experi-
ments mimicked the crowded event entrances. The videos were recorded by a top-view
static camera with a frame rate of 25 frames per second and 1920 × 1440 pixels resolution. In
addition to the videos, parameters for video undistortion and trajectory data are available.
In Figure 5, the left part sketches the experimental setup and Table 1 shows the different
characteristics of the selected experiments.

W

L

Figure 5. ROI in the entrance. (Left) experimental setup with the red dot indicating the coordinate
origin [42], (right) overhead view of an exemplary experiment. The original frame in the right image
is from [42]. The entrance gate width is 0.5 m. The rectangle indicates the entrance area (ROI).
L: length of ROI in m. According to the experiment, the width of the ROI (w) varies from 1.2 to 5.6 m.
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Table 1. Characteristics of the selected experiments.

Experiment * Width (m) Pedestrians Direction Frames **

110 1.2 63 Left to right 1285
150 5.6 57 Left to right 1408
170 1.2 25 Left to right 552
270 3.4 67 Right to left 1430
280 3.4 67 Right to left 1640

* The same names as reported in [42]; ** The number of frames that contain pedestrians in the ROI.

Experts performing the manual rating are social psychologists who developed the
corresponding rating system [3]. PeTrack [7] was used to track each pedestrian one-by-
one, over every frame in the video experiments. Pedestrian ratings are annotated for
the first frame when the respective participant becomes visible in the video. The first
rating can be extended to the whole video and every frame if that pedestrian does not
change his/her behavior. If there is a behavioral change during the experiment, then the
rating is also changed. Likewise, it can be extended to the rest of the frames if there is
no additional change in the behavior. The rating process is finished after every frame is
filled with ratings for every pedestrian. The behaviors of pedestrians are labeled with
numbers ∈ {0, 1, 2}; 0 indicates that a corresponding pedestrian does not appear in the clip,
while 1 and 2 represent non-pushing and pushing behaviors, respectively. Two ground
truth files (MIMQ12 and MIMQ25 ) for each experiment were produced for this paper. Further
information about the manual rating can be found in [3].

4.1.2. MIM Labeling and Dataset Creation

Three steps are required to create the labeled MIM-based datasets. In the first step,
we generated the samples from the videos; the samples were: RAFT-MIMQ12 , RAFT-
MIMQ25 , Farnebäck-MIMQ12 , and Farnebäck-MIMQ25 sequences. The MIM represents the
crowd motion in the ROI, which is presented by the rectangle in Figure 5. It is worth
mentioning that the directions of the crowd flows in the videos are not similar. This
difference could influence building an efficient classifier because changing the direction
is one candidate feature for pushing behavior representation. To address this problem,
we unified the direction in all videos from left to right before extracting the samples.
Additionally, to improve the efficiency of the datasets, we discarded roughly the first
seconds from each video to guarantee that all pedestrians started to move forward.

Based on the ground truth files, the second step labels MIMs in the four MIM sequences
into pushing and non-pushing. Each MIM that contains at least one pushing pedestrian is
classified as pushing; otherwise, it is labeled as non-pushing.

Finally, we randomly split each dataset into three distinct sets: 70% for training, 15%
for validation, and 15% for testing. The 70%-15%-15% split ratio is one of the most common
ratios in the deep learning field [45]. The information about the number of pushing and
non-pushing samples in the training, validation and test sets for the four MIM-based
datasets is given in Table 2. As can be seen from Table 2, our MIM-based datasets suffer
from two main limitations: lack of data and a class imbalance problem, since less than 20%
of samples are non-pushing.
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Table 2. Number of labeled samples in training, validation, and test sets for each MIM-based dataset.

Dataset

Experiment

110 150 170 270 280 All

P NP P NP P NP P NP P NP P NP Total

RAFT-MIMQ12

Training 66 16 76 14 28 5 61 29 86 11 317 75 392
Validation 13 3 15 3 5 1 13 6 18 2 64 15 79
Test 13 3 15 3 5 1 13 6 18 2 64 15 79
Total 92 22 106 20 38 7 87 41 122 15 445 105 550

RAFT-MIMQ25

Training 30 6 35 6 13 1 29 13 40 4 147 30 177
Validation 6 2 7 1 3 1 6 2 8 1 30 7 37
Test 6 2 7 1 3 1 6 2 8 1 30 7 37
Total 42 10 49 8 19 3 41 17 56 6 207 44 251

Farnebäck-MIMQ12 It has the same samples as the RAFTQ12 sets while they are generated using Farnebäck.
Farnebäck-MIMQ25 It has the same samples as the RAFTQ25 sets while they are generated using Farnebäck.

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280: names of the
video experiments.

4.2. The Proposed Patch-Based Approach

In this section, we propose a new patch-based approach to alleviate the limitations
of the MIM-based datasets. The general idea behind our approach is to enlarge the small
pushing behavior dataset by dividing each MIM into several patches. After that, we label
each patch into “pushing” or “non-pushing” to create a patch-based MIM dataset. The
patch should cover a region that can contain a group of pedestrians, where the motion
information of the group is essential for pushing behavior representation. Section 5.2
investigates the impact of the patch area on the classifier accuracy. To further clarify the
idea of the proposed approach, we take an example of a dataset with one pushing MIM and
one non-pushing MIM, as depicted in Figure 6. After applying our idea with 2 × 3 patches
on the dataset, we obtain a patch-based MIM dataset with four pushing, six non-pushing,
and two empty MIM patches. The empty patches are discarded. In conclusion, the dataset
is enlarged from two images into ten images. The methodology of our approach, as shown
in Figure 7 and Algorithm 2, consists of four main phases: automatic patches labeling,
visualization, manual revision, and patch-based MIM dataset creation. The following
paragraphs discuss the inputs and the workflow of the approach.

a. Pushing MIM b. Non-pushing MIM

c. Pushing MIM-patches d. Non-pushing MIM-patches

Patches

M
IM

-b
as

ed
 d

at
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et
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d 
M

IM
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et

Figure 6. A simple example of the patch-based approach idea. Circles: ground truth pushing.
Red boxes: pushing patches. Green boxes: non-pushing patches.
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Figure 7. The flow diagram of the proposed patch-based approach. n and m: the numbers of rows
and columns, respectively, that are used to divide ROI into n × m regions.

Our approach relies on four inputs (Algorithm 2 and Figure 7, inputs part): (1) MIM-
based dataset, which contains a collection of MIMs with the first frame of each MIM; the
frames are used in the visualization phase; (2) ROI, n and m, parameters that aim to identify
the regions for patches; (3) Pedestrian trajectory data to find the pedestrians in each patch;
(4) Manual rating information (ground truth file) helps to label the patches.

The first phase, automatic patch labeling, identifies and labels the patches in each
MIM (Algorithm 2, lines 1–33 and Figure 7, first phase). The phase contains two steps:
(1) Finding the regions of the patches. For this purpose, we find the coordinates of the
regions that are generated from dividing the ROI area into n × m parts. The extracted
regions can be described as {ak| k = 1, 2, . . . , n×m}, where ak represents a patch sequence
{pk,i ∈ R(w/m)× (h/n)× 3 | i = 1, 2, . . . , |MIMQ|}, w and h are the ROI width and height,
respectively, see Algorithm 2, lines 1–15. We should point out that identifying the regions
is performed on at least two levels; to avoid losing any useful information. For example,
in Figure 8, we first split ROI by 3 × 3 regions (Algorithm 2, lines 2–8), while in the second
level, we reduce the number of regions (2 × 2) to obtain larger patches (Algorithm 2,
lines 9–15) containing the missing pushing behaviors (pushing behaviors are divided
between the patches) in the first level; (2) Labeling the patches is executed according to the
pedestrians’ behavior in each patch pk,i. Firstly, we find all pedestrians who appear in MIMi
(Algorithm 2, lines 18 and 19). Then, we label each pk,i as pushing if it contains at least
one pushing behavior; otherwise, it is labeled as non-pushing (Algorithm 2, lines 20–28).
Finally, we store k, i, and the label of pk,i in a CSV-file (Algorithm 2, lines 29 and 30).
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Algorithm 2 Patch-Based Approach.
Inputs:
dataset← collection of MIMs with the first frame of each MIM
ROI← matrix[le f t_top : [x_coordinate, y_coordinate], right_bottom : [x_coordinate, y_coordinate]]
n, m← the numbers of rows and columns that are used to divide ROI into n×m regions.
trajectory← CSV file, each row represents 〈order o f f rame( ft), pedestrian no., pixel x− coordinate, pixel y− coordinate〉
ground_truth← CSV file, each row represents 〈ordero f ci or MIM, behavior o f pedestrian 1, behavior o f pedestrian 2, . . . , behavior
o f last pedestrian〉

Outputs:
pushing_folder, non-pushing_folder
1: region← matrix[[]] . Automatic patches labeling
2: patch_width← (ROI[1, 0]− ROI[0, 0])/m
3: patch_height← (ROI[1, 1]− ROI[0, 1])/n
4: for i← 0, 1, . . . , n− 1 do
5: for j← 0, 1, . . . , m− 1 do
6: region.append([ROI[0, 0] + j× patch_width, ROI[0, 1] + i× patch_height, ROI[0, 0] + (j+ 1)× patch_width, ROI[0, 1] +

(i + 1)× patch_height])
7: end for
8: end for
9: patch_width← (ROI[1, 0]− ROI[0, 0])/(m− 1)

10: patch_height← (ROI[1, 1]− ROI[0, 1])/(n− 1)
11: for i← 0, 1, . . . , n− 2 do
12: for j← 0, 1, . . . , m− 2 do
13: region.append([ROI[0, 0] + j× patch_width, ROI[0, 1] + i× patch_height, ROI[0, 0] + (j+ 1)× patch_width, ROI[0, 1] +

(i + 1)× patch_height])
14: end for
15: end for
16: f ile← CSV f ile
17: for each MIM ∈ dataset do
18: f rame_order ← MIM name
19: ped← Filter(trajectory. f rame_order)[1]
20: patch_no ← 1
21: for each patch_region ∈ region do
22: behavior ← 1 //non-pushing
23: for each ped ∈ patch_region do
24: if Filter(ground_truth. f rame_order & ped) == 2 then
25: behavior ← 2 //pushing
26: break
27: end if
28: end for
29: record← [patch_no, f rame_order, behavior]
30: f ile.write(record)
31: patch_no ← patch_no + 1
32: end for
33: end for

. Visualization
34: for each f rame ∈ dataset do
35: f rame_order ← f rame name
36: ped← Filter(trajectory. f rame_order)[1]
37: for each person ∈ ped do
38: behavior ← Filter(ground_truth. f rame_order & person)
39: if behavior ==2 then
40: draw a circle around the position 〈person[2], person[3]]〉 of pedestrian person[1] over f rame
41: end if
42: end for
43: for patch_no ← 1, 2, . . . , len(region) do
44: if Filter( f ile. f rame_order & patch_no)[2] == 2 then
45: draw a red rectangle around region[patch_no− 1] over f rame
46: else
47: draw a green rectangle around region[patch_no− 1] over f rame
48: end if
49: end for
50: end for

. Manual revision
51: for each f rame ∈ dataset do
52: for each patch_region ∈ region do
53: manual revision of patch_region in f rame
54: if patch_region contains only a part o f one pushing behavior and its label is 2 then
55: manually updating the label of the patch_region in f ile to 6, where 6 means unknown patch
56: end if
57: end for
58: end for

. Patch-based MIM dataset creation
59: for each MIM ∈ dataset do
60: MIM_order ← MIM name
61: for patch_no ← 1, 2, . . . , len(region) do
62: patch← MIM[region[patch_no− 1, 1] : region[patch_no− 1, 3], [region[patch_no− 1, 0] : region[patch_no− 1, 2]]
63: if Filter( f ile.MIM_order & patch_no)[2] == 2 then
64: save patch to pushing_folder under name “MIM_order− patch_no"
65: else if Filter( f ile.MIM_order & patch_no)[2] == 1 then
66: save patch to non-pushing_folder under name “MIM_order− patch_no"
67: end if
68: end for
69: end for
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a. First-level (3 x 3) b. Second-level (2 x 2)
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Figure 8. An example of identifying patches and the visualization process. The original frames are
from [42]. Red boxes: pushing patches. Green boxes: non-pushing patches. White circles: ground
truth pushing.

Despite the availability of the pedestrian trajectories, the automatic patch labeling
phase is not 100% accurate, affecting the quality of the dataset. The automatic way fails
to label some of the patches that only contain a part of one pushing behavior. Therefore,
manual revision is required to improve the dataset quality. To ease this process and make
it more accurate, the visualization phase (Algorithm 2, lines 34–50 and Figure 7, second
phase) visualizes the ground truth pushing (Algorithm 2, lines 36–42), and the label of each
pk,i (Algorithm 2, lines 43–49) on the first frame of MIMi. Figure 8 is an example of the
visualization process.

The manual revision phase ensures that each pk,i takes the correct label by manually
revising the visualization data (Algorithm 2, lines 51–58 and Figure 7, third phase). The
criteria used in the revision are as follows: if pk,i only has a part of one pushing behavior,
we change the labels to unknown labels in the CSV-file generated by the first phase;
otherwise, the label of pk,i is not changed. The unknown patches do not offer complete
information about pushing behavior or non-pushing behavior. Therefore, the final phase
in our approach will discard them. A good example of an unknown patch is patch 7,
Figure 8a. This patch contains a part of one pushing behavior, as highlighted by the arrow.
On the other hand, patch 12 in the aforementioned example (b) contains the whole pushing
behavior that we lose in discarding patch 7.

In the final phase (Algorithm 2, lines 59–69 and Figure 7, fourth phase), the patch-
based MIM dataset creation is responsible for creating the labeled patch-based MIM dataset,
containing two groups of MIM patches, pushing and non-pushing. Firstly, we crop pk,i from
MIMi (Algorithm 2, line 62). Next, and according to the labels of the patches, the pushing
patches are stored in the first group (Algorithm 2, lines 63 and 64), while the second group
archives the non-pushing patches (Algorithm 2, lines 65 and 66).

4.3. Patch-Based MIM Dataset Creation

In this section, we aimed to create several patch-based MIM datasets using the pro-
posed patch-based approach and the MIM-based datasets. The main purposes of the
created datasets are: (1) to build and evaluate our classifier; (2) examine the influence of the
patch area and clip size on classifier accuracy.

In order to study the impact of the patch area on classifier accuracy, we used two dif-
ferent areas. As we mentioned before, the regions covered by the patches should be enough
to house a group of pedestrians. Therefore, according to the ROIs of the experiments, we
selected the two patch areas as follows: 1 m × (1 to 1.2) m and 1.67 m × (1.2 to 1.86) m.
The dimensions of each area refer to the length x width of patches. Due to the width
difference between the experiment setups, there is a variation in the width between the
experiments. Table 1 shows the width of each experiment’s setup, while the length of the
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ROI area in all experiment setups was 5 m (Figure 5, left part). For the sake of discussion,
we name the 1 m × (1 to 1.2) m patch area as the small patch, and 1.67 m × (1.2 to 1.86) m
as the medium patch. Moreover, the small and medium patching with the used levels are
illustrated in Figure 9.
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Figure 9. The visualization of patching for the experiments. Numbers represent the patch order in
each experiment and level.

The patch-based approach is performed on the RAFT-MIM-based training sets to
generate patch-based RAFT-MIM training sets, while it creates patch-based RAFT-MIM
validation sets from the RAFT-MIM-based validation sets. The created patch-based RAFT-
MIM datasets with their numbers of labeled samples are presented in Table 3. The table
and Figure 10 demonstrate that the proposed approach enlarges the RAFT-MIM-based
training and validation sets in both small and medium patching. The approach roughly
duplicates the MIM-based training and validation sets 13 times in small patching. While
in medium patching, each MIM-based training and validation set is duplicated 8 times.
Moreover, our approach decreases the class imbalance issue significantly.

Table 3. Number of labeled MIM patches in training and validation sets for each patch-based
MIM dataset.

Dataset

Experiment

110 150 170 270 280 All

P NP P NP P NP P NP P NP P NP Total

Patch-based small RAFT-MIMQ12
Training 350 279 523 932 121 97 528 784 634 806 2156 2898 5054
Validation 67 53 89 161 20 21 91 169 108 162 375 566 941
Total 417 332 612 1093 141 118 619 953 742 968 2531 3464 5995

Patch-based small RAFT-MIMQ25
Training 156 124 249 419 53 42 236 379 324 354 1018 1318 2336
Validation 33 26 35 82 9 12 56 53 67 89 200 262 462
Total 189 150 284 501 62 54 292 432 391 443 1218 1580 2798

Patch-based medium RAFT-MIMQ12
Training 237 131 298 354 95 38 540 439 698 326 1868 1288 3156
Validation 45 26 55 64 16 8 98 105 126 81 340 284 624
Total 282 157 353 418 111 46 638 544 824 407 2208 1572 3780

Patch-based medium RAFT-MIMQ25
Training 107 58 142 151 42 14 242 219 338 146 871 585 1459
Validation 22 14 20 37 8 6 56 27 68 32 174 116 290
Total 129 72 162 188 50 20 298 246 406 178 1045 704 1749

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280: names of the
video experiments.

The approach reduces the difference percentage between the pushing and non-pushing
classes in the patch-based MIM training and validation sets as follows: patch-based small
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RAFT-MIMQ12 , from 62% to 16%. Patch-based medium RAFT-MIMQ12 , from 62% to 17%.
Patch-based small RAFT-MIMQ25 , from 65% to 13%. Patch-based medium RAFT-MIMQ25 ,
from 65% to 20%.
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Figure 10. The visualization of the number of pushing and non-pushing samples for the training and
validation sets.

Despite these promising results, we can only assess the efficiency of our approach when
the CNN-based classifier is trained and tested on our patch-based RAFT-MIM datasets.
For this important process, we generate four patch-based RAFT-MIM test sets. The patch-
based approach applies the first level of patching on RAFT-MIM-based test sets (Table 2)
to generate the patch-based RAFT-MIM test sets. We apply the first level in the small
and medium patching (because we need to evaluate our classifier for detecting pushing
behavior at the small and medium patches). Table 4 shows the number of labeled MIM
patches in the patch-based RAFT-MIM test sets and their experiments. In Section 5.3, we
discuss the impact of the patch-based approach on the accuracy of CNN-based classifiers.

Table 4. Number of labeled MIM patches in patch-based test sets.

Test Set

Experiment

110 150 170 270 280 All

P NP P NP P NP P NP P NP P NP Total

Patch-based small RAFT-MIMQ12 test 40 28 47 99 9 13 59 112 61 108 216 360 576
Patch-based small RAFT-MIMQ25 test 18 15 19 44 7 8 28 54 25 36 97 157 254
Patch-based medium RAFT-MIMQ12 test 26 16 25 47 8 6 47 41 50 40 156 150 306
Patch-based medium RAFT-MIMQ25 test 13 8 8 26 5 5 22 19 20 18 68 76 144

P: pushing samples. NP: non-pushing samples. All: all experiments. 110, 150, 170, 270, and 280: names of the
video experiments.

5. Experimental Results

This section presents the parameter setup and performance metrics used in the eval-
uation. Then, it trains and evaluates our classifier and studies the impact of the patch
area and clip size on the classifier performance. After that, we investigate the influence of
the patch-based approach on the classifier performance. Next, the effect of RAFT on the
classifier is discussed. Finally, we evaluate the performance of the proposed framework on
the distorted videos.
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5.1. Parameter Setup and Performance Metrics

For the training process, the RMSProp optimizer with a binary cross-entropy loss
function was used. The batch size and epochs were set to 128 and 100, respectively.
Moreover, when the validation accuracy did not increase for 20 epochs, the training pro-
cess was automatically terminated. In the RAFT and Farnebäck methods, we used the
default parameters.

The implementations in this paper were performed on a personal computer running
the Ubuntu operating system with an Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz
(8 CPUs) 2.3 GHz and 32 GB RAM. The implementation was written in Python using
PyTorch, Keras, TensorFlow, and OpenCV libraries.

In order to evaluate the performance of the proposed framework and our classifier,
we used accuracy and F1 score metrics. This combination was necessary since we had
imbalanced datasets. Further information on the evaluation metrics can be found in [46].

5.2. Our Classifier Training and Evaluation, the Impact of Patch Area and Clip Size

In this section, we have two objectives: (1) training and evaluating the adapted
EfficientNet-B0-based classifier. (2) Investigating the impact of the clip size and patch area
on the performance of the classifier.

We compare the adapted EfficientNet-B0-based classifier with three well-known CNN-
based classifiers (MobileNet [47], InceptionV3 [48], and ResNet50 [49]) to achieve the above
objectives. The classification part in the well-known CNN architectures is modified to be
binary. The four classifiers train from scratch on the patch-based RAFT-MIM training and
validation sets. Then we evaluate the trained classifiers on patch-based RAFT-MIM test
sets to explore their performance.

From the results in Table 5 and Figure 11, it is seen that our trained classifier on the
patch-based medium RAFT-MIMQ12 dataset achieves better accuracy and F1 scores than
other classifiers. More specifically, the EfficientNet-B0-based classifier has 88% accuracy
and F1 scores. Furthermore, the medium patches help all classifiers to obtain better
performances than small patches. At the same time, MIMQ12 is better than MIMQ25 for
training the four classifiers in terms of accuracy and F1 score.

Table 5. Comparison with well-known CNN-based classifiers on patch-based MIM datasets.

CNN-Based Classifier

Patch-Based MIM Dataset

Medium RAFT-MIMQ12 Small RAFT-MIMQ12 Medium RAFT-MIMQ25 Small RAFT-MIMQ25

Accuracy% F1 Score% Accuracy% F1 Score% Accuracy% F1 Score% Accuracy% F1 Score%

MobileNet 87 87 79 78 85 85 77 74
EfficientNet-B0 88 88 81 80 87 87 78 78
InceptionV3 85 85 76 75 80 80 76 74
ResNet50 80 80 70 70 74 73 71 69

Bold: best results in each dataset. Gray highlight: Best results among all datasets.

The patch area influences the classifier performance significantly. For example,
medium patches improve the EfficientNet-B0-based classifier accuracy and F1 scores by 7%
and 8%, respectively, compared to the small patches. On the other hand, the effect of the
MIM sequence (clip size) on the classifier performance is lesser than the influence of the
patch area. Compared to medium MIMQ25 , medium MIMQ12 enhances the accuracy and F1
score by 1% in the EfficientNet-B0-based classifier.

In summary, the trained adapted EfficientNet-B0-based classifier on the patch-based
medium RAFT-MIMQ12 dataset achieves the best performance.

5.3. The Impact of the Patch-Based Approach

We evaluated the impact of the proposed patch-based approach on the performance
of the trained classifiers on patch-based medium RAFT-MIMQ12 training and validation
sets. To achieve that, we trained the four classifiers on RAFT-MIMQ12-based training
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and validation sets (Table 2). Then the trained classifiers were evaluated on patch-based
medium RAFT-MIMQ12 test sets (Table 4).
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Figure 11. Comparisons of four classifiers over all patch-based RAFT-MIM sets.

Table 6 represents the performance of MIM-based classifiers. The comparison between
patch-based classifiers and MIM-based classifiers is visualized in Figure 12. We can see that
the EfficientNet-B0-based classifier (MIM-based classifier) achieves the best performance,
which is a 78% accuracy and F1 score. In comparison, the corresponding patch-based
classifier achieves an 88% accuracy and F1 score. This means that the patch-based approach
improves the accuracy and F1 score of the EfficientNet-B0-based classifier by 10%. Similarly,
in other classifiers, the patch-based approach increases the accuracy and F1 score by at least
15% for each.

Table 6. MIM -based classifier evaluation.

Patch-Based Classifier MIM-Based Classifier

CNN-Based Classifier Accuracy% F1 Score% Accuracy% F1 Score%

MobileNet 87 87 71 69
EfficientNet-B0 88 88 78 78
InceptionV3 85 85 51 34
ResNet50 80 80 51 34

MobileNet EfficientNet-B0 InceptionV3 ResNet50
0

20

40

60

80

%

Patch-based classifier [accuracy]
MIM-based classifier [accuracy]
Patch-based classifier [F1-score]
MIM-based classifier [F1-score]

Figure 12. Comparison between MIM-based classifiers and patch-based classifiers.
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5.4. The Impact of RAFT

In order to study the impact of RAFT on our classifier, we trained it using the patch-
based medium Farnebäck-MIMQ12 dataset. Farnebäck is one of the most popular optical
flow methods used in human action detection. Firstly, we created patch-based medium
training and validation and test sets from the Farnebäck-MIMQ12-based dataset (Table 2).
The training and validation sets were used to train the EfficientNet-B0-based classifier
(Farnebäck-based classifier), while the test set was used to evaluate the classifier. Finally,
we compared the performance of the classifier based on RAFT with the classifier based on
Farnebäck. As shown in Table 7 and Figure 13, we find that RAFT improves the classifier
performance in all classifiers compared to Farnebäck. In particular, RAFT enhances the
EfficientNet-B0-based classifier performance by 8%.

Table 7. Comparison between RAFT-based classifiers and Farnebäck-based classifiers.

RAFT-Based Classifier Farnebäck-Based Classifier

Classifier Accuracy% F1 Score% Accuracy% F1 Score%

MobileNet 87 87 81 81
EfficientNet-B0 88 88 80 80

InceptionV3 85 85 79 79
ResNet50 80 80 74 73
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Figure 13. Comparison between the RAFT-based classifier and the Farnebäck-based classifier.

5.5. Comparison between the Proposed Classifier and the Customized CNN-Based Classifiers in
Related Works

In this section, we evaluate our classifier by comparing it with two of the most recent
customized CNN architectures (CNN-1 [25] and CNN-2 [35]) in the video-based abnormal
human behavior detection field. Customized CNNs have simple architectures; CNN-1
used 75 × 75 pixels as an input image, three convolutional layers followed by batch
normalization and max pooling operations. Finally, a fully connected layer with a softmax
activation function was employed for classification. On the other hand, CNN-2 resized the
input images into 28 × 28 pixels, then employed three convolutional layers with three max
pooling layers (each max pooling layer with strides of 2 pixels). Moreover, it used two fully
connected layers for predictions; the first layer was based on a ReLU activation function,
while the second layer used a softmax activation function. For more details on CNN-1 and
CNN-2, we refer the reader to [25,35], respectively.

The three classifiers were trained and evaluated based on the patch-based medium
RAFT-MIMQ12 dataset. As shown in Table 8 and Figure 14, CNN-1 and CNN-2 obtained
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low accuracy and F1 scores (less than 61%), while our classifier achieved an 88% accuracy
and F1 score.

Table 8. Comparisons to the customized CNN-based classifiers in the related works.

Classifier Accuracy% F1 Score%

EfficientNet-B0 (our classifier) 88 88
CNN-1 [25] 60 54
CNN-2 [35] 54 35

In summary, and according to Figure 15, the reviewed customized CNN architectures
are simple and not enough to detect pushing behaviors because the differences between
pushing and non-pushing behaviors are not clear in many cases. To address this challenge,
we need an efficient classifier (such as the proposed classifier).

Our classifier CNN-1 CNN-2
CNN-based classifier

40

50

60

70

80

90

%

Accuracy
F1-score

Figure 14. Comparison between our classifier, CNN-1 [25] and CNN-2 [35] based on the patch-based
medium RAFT-MIMQ12 dataset.

a b c

Figure 15. Confusion matrices for our classifier (a), CNN-1 [25] (b) and CNN-2 [35] (c) based on the
patch-based medium RAFT-MIMQ12 dataset.

5.6. Framework Performance Evaluation

Optical imaging systems often suffer from distortion artifacts [50]. According to [51],
distortion is “a deviation from the ideal projection considered in a pinhole camera model,
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it is a form of optical aberration in which straight lines in the scene do not remain straight
in an image”. The distortion leads to inaccurate trajectory data [52]. Therefore, PeTrack
corrects the distorted videos before extracting the accurate trajectory data, whereas the
required information for the correction is not often available. Unfortunately, training our
classifier on undistorted videos could decrease the framework performance on distorted
videos. Therefore, in this section, we evaluated the proposed framework performance
on the distorted videos and studied the impact of the false reduction algorithm on the
framework performance. To achieve both goals, firstly, we evaluated the framework’s
performance without the algorithm on the distorted videos. Then, the framework with the
algorithm was evaluated. Finally, we compared both performances.

A qualitative methodology was used in both evaluations; the methodology consisted
of four steps: (1) we applied the framework to annotate distorted clips corresponding to
MIMs in the RAFT-MIMQ12-based test set (Figure 16); the bottom image is an example of
an annotated distorted clip; (2) Unfortunately, we could not visualize the ground truth
pushing on the distorted frames because the trajectory data were inaccurate. Therefore, we
visualized ground truth pushing on the first frame of the corresponding undistorted clips to
the distorted clips, Figure 16, top image. Then, we manually identified pushing behaviors
on the distorted clips based on the corresponding annotated undistorted clips; This process
is highlighted by arrows in Figure 16. (3) We manually calculated the number of true
pushing, false pushing, true non-pushing, and false non-pushing. Note that the empty
patches were discarded. Non-empty patches containing more than half of the pushing
behaviors are labeled as pushing; otherwise, they are labeled as non-pushing. Half of the
pushing behavior means that more than half of the visible pedestrian body contributes to
pushing; (4) Finally, we measured the accuracy and F1 score metrics.

FP TPTNP

Figure 16. An example of the used qualitative methodology. (Top) the first frame of an undistorted
clip; (Bottom) the first frame of a distorted clip. White arrows: connecting the pushing locations in
both undistorted and distorted clips. TP: true pushing. FP: false pushing. TNP: true non-pushing.
White circles: ground truth pushing. Red boxes: predicted pushing patches. Green boxes: predicted
non-pushing patches.

From Table 9, we can see that our framework with the false reduction algorithm can
achieve an 86% accuracy and F1 score on the distorted videos. Moreover, the false reduction
improves the performance by 2%.

Table 9. The performance of the framework with and without false reduction on distorted videos.

Framework Accuracy% F1 Score%

Without false reduction 84 84
With false reduction 86 86
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6. Conclusions, Limitations, and Future Work

This paper proposed a hybrid deep learning and visualization framework for au-
tomatic pushing behavior detection at the patch level, particularly from top-view video
recordings of crowded event entrances. The framework mainly relied on the power of
EfficientNet-B0-based CNN, RAFT, and wheel visualization methods to overcome the high
complexity of pushing behavior detection. RAFT and wheel visualization are combined to
extract crowd motion information and generate MIM patches. After that, the combination
of the EfficientNet-B0-based classifier and false reduction algorithm detects the pushing
MIM patches and produces the pushing annotated video. In addition to the proposed
framework, we introduced an efficient patch-based approach to increase the number of
samples and alleviate the class imbalance issue in pushing datasets. The approach aims
to improve the accuracy of the classifier and the proposed framework. Furthermore, we
created new datasets using a real-world ground truth of pushing behavior videos and the
proposed patch-based approach for evaluation. The experimental results show that: (1) the
patch-based medium RAFT-MIMQ12 dataset is the best compared to the other generated
datasets for training the CNN-based classifiers; (2) Our classifier outperformed the baseline
well-known CNN architectures in image classification as well as customized CNN architec-
tures in the related works; (3) Compared to Farnebäck, RAFT improved the accuracy of
the proposed classifier by 8%; (4) The proposed patch-based approach helped to enhance
our classifier accuracy from 78% to 88%; (5) Overall, the proposed adapted EfficientNet-B0-
based classifier obtained 88% accuracy on the patch-based medium RAFT-MIMQ12 dataset;
(6) The above results were based on undistorted videos, while the proposed framework
obtained 86% accuracy on the distorted videos; (7) The developed false reduction algorithm
improved the framework accuracy on distorted videos from 84% to 86%. The main reason
behind decreasing the framework accuracy on distorted videos was training the classifier
based on undistorted videos.

The main limitations of the proposed framework cannot be applied in real time.
Additionally, it does not work well with recorded videos from a moving camera. Moreover,
the framework was evaluated only on specific scenarios of crowded event entrances.

In future work, we plan to evaluate our framework in more scenarios of crowded
event entrances. Additionally, we plan to optimize the proposed framework to allow
real-time detection.
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