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Effect of normalization on feature extraction and
classification in Deep Belief Networks
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Abstract. Use a good set of features able to code images is of major
importance for good classification scores. Most of the methods used the
last few years are based on empirically determined features such that GiST,
SURF or SIFT detectors. An alternative way is to try to compute an
alphabet of features from which the initial set of images is statistically
likely to have been generated. This recent approach based on Restricted
Boltzmann Machines has been popularized by Hinton [?] who proposed an
efficient algorithm for computing the underlying generative model. One
of the major interest of the approach is that it is grounded on statistical
theory of image reconstruction and that the RBM layers can be stacked so
that the initial features can be non-linearly combined. These deep belief
networks (DBNs) is reminiscent of the way the ventral pathway of primate
cortex code images and scenes. The code obtained at the output of the
network can be used for classification. In particular it has been used for
semantic place recognition (SPR) in robotics [?], a problem in which a
robot has to find its present location on the basis of the visual aspect of
the scene. We have previously shown [?] that these DBNs provide state of
the art results. For this purpose, the initial data were normalized as usual
[] using a whitening procedure. However, when considering brain models,
this whitening procedure is non-realistic since it is difficult to account for
global computations in the brain. This is one of the reason why, in the
present work, we replaced this global normalization procedure by a local
one. Unexpectedly, this procedure gave better SPR classification results.
In this paper, we explore the reason why local normalization could be a
better way than whitening to prepare the data for classification. One of
the main reason is that local normalization better preserves the spatial
frequency composition of the images and thus retains more information
on the organization of the image than whitening. Both empirical and
theoretical evidences for that are illustrated in the paper. This work opens
the way to the elaboration of a link between two important characteristics
of images : their statistical properties and their frequency composition.

1 Introduction

SPR requires the use of an appropriate feature space that allows an accurate
and rapid classification. Recent works have been developed for this problem



based on visual descriptors. In particular, these descriptors are either based on
global images features (GiST and CENTRIST) (see, for instance, [10, 33, 34]),
or on local signatures computed around interest points (SIFT and SURF) (see,
for instance, [35, 36]). However, these representations first need to use Bag-of-
Words (BoWs) methods, which consider only a set of interest in the image, to
reduce their size and then followed by the use of vector quantization such that the
image is eventually represented as a histogram. Discriminative approaches can
be used to compute the probability to be in a given place according to the current
observation. Generative approaches can also be used to compute the likelihood of
an observation given a certain place within the framework of Bayesian filtering.
Among of these approaches, some works [32] omit the quantization step and
model the likelihood as a Gaussian Mixture Model (GMM). Recent approaches
also propose to use naive Bayes classifiers and temporal integration that combine
successive observations [37].

Contrarily to these empirical methods, new machine learning approaches
have recently emerged strongly related to the way natural systems code images
[14].

These methods are based on the consideration that natural image statistics
are not Gaussian as it would be if they have had a completely random struc-
ture [25]. The auto-similar structure of natural images allowed the evolution
to build optimal codes. These codes are made of statistically independent fea-
tures and many different methods have been proposed to construct them from
image datasets. Imposing locality and sparsity constraints to these features is
very important. This is probably due to the fact that any simple algorithms
based on such constraints can achieve linear signatures similar to the notion of
receptive field in natural systems. Recent years have seen an interesting interest
in computer vision algorithms, that rely on local sparse image representations,
especially for the problems of image classification and object recognition

[9, 26, 27, 28, 30]. Moreover, from a generative point of view, the effective-
ness of local sparse coding, for instance for image reconstruction [29], is justified
by the fact that an natural image can be reconstructed by a smallest possible
number of features. It has been shown that Independent Component Analysis
(ICA) produces localized features. Besides it is efficient for distributions with
high kurtosis well representative of natural image statistics dominated by rare
events like contours; however the method is linear and not recursive. These two
limitations are released by DBNs [12] that introduce non-linearities in the coding
scheme and exhibit multiple layers. Each layer is made of a RBM, a simplified
version of a Boltzmann machine proposed by Smolensky [13] and Hinton [11].
Each RBM is able to build a generative statistical model of its inputs using a
relatively fast learning algorithm, Contrastive Divergence (CD), first introduced
by Hinton [11]. Another important characteristic of the codes used in natural
systems, the sparsity of the representation [14], is also achieved in DBNs. More-
over, it has been shown that these approaches remain robustness to extract local
sparse efficient features from tiny images [32].

However, while a sparse representation has been assumed to be a linearly



separable in several works, for example [30, 31], and thus simplifies the overall
classification problem, the question of whether smaller or larger sparse features
are more beneficial to improve the recognition rates remains an open question.
Therefore, the fundamental contributions of this paper are three-fold. First,
it demonstrates that DBNs coupled with tiny images can be successfully used
in the context of SPR. Second, it provides a simpler alternative way to the
BoW methods. Third, it evaluates the influence of data normalization on the
detection of features and thus on SPR performances. To our knowledge, there
is no empirical study yet showing that larger sparse features based on DBNs
improve recognition performance compared with smaller ones.

2 Model description

2.1 Image preprocessing

Usually, natural images are highly structured and contain significant statistical
redundancies, i.e. their pixels have strong correlations [15, 16]. For example,
it is well known that natural images bear considerable regularities in their first
and second order statistics (spatial correlations), which can be measured using
the autocorrelation function or the Fourier power spectral density [17]. These
correlations are due to the redundant nature of natural images (adjacent pixels
usually have strong correlations dur to low frequency background except around
edges). The presence of these correlations allows image reconstruction using
Markov Random Fields. It has thus been shown [18, 17, 20] that the edges are
the main characteristics of the natural images and that they are rather coded
by higher order statistical dependencies. Thus the statistics of natural images
is not Gaussian since the moments greater than order-two are zero for Gaussian
distributions. This statistics of natural images is then dominated by rare events
like contours, leading to high-kurtosis long-tailed distributions.

2.1.1 Data whitening and local normalization

Statistical whitening The most popular method to remove these expected order-
two correlations is known as whitening. This conventional whitening is a way to
center and reduce a data cloud according to its principal directions. Centering
the data means that the mean along to the different directions is subtracted to
the initial data. The directions are indifferent provided they form a orthogonal
set of axes of the same dimension as the initial data. reduction is operated
along the principal directions of the data cloud. It means that the initial data is
first projected onto the eigen vectors of the variance-covariance matrix and then
devided by values proportional to the corresponding eigenvalues. The resulting
equation is thus :

x̃ = Λ−
1
2Wx (1)

The goal of whitening is to make the variance-covariance matrix of the tran-
formed data equals to unity. To do that consider a set of data already centered:



X =

 x
(1)
1 ... xm1

...

x
(1)
n ... xmn

 (2)

Its variance covariance matrix is xxτ (note that we are interested in the
variance of the components accross the data).

We are searching for a transform x̃ = Dx such that xxτ = I.

x̃x̃τ = I =⇒ DxxτDτ = I (3)

DxxτDτ = DRDτ where R is the variance covariance matrix of x. This
matrix results from the equation R = W τΛW where W and Λ are respectively
the eigenvector and eignevalue matrices of R. Imposing DW τΛWDτ = I implies
D−1 = W τΛ

1
2 and thus:

D = Λ−
1
2W (4)

This transform has the effect of rouding or sphericizing the data cloud. If
the initial data cloud is distributed as a gaussian distribution, the shape of the
final data is a fuzzy sphere since there is no more prefered direction in the data
(the elongation along the main axes becomes identicalin all directions).

It has been shown that whitening is a useful pre-processing strategy in ICA
[19, 2]. It seems also a mandatory step for the use of clustering methods in object
recognition [21]. Whitening being a linear process, it does not remove the higher
order statistics or regularities present in the data. The theoretical grouding of
whitening is simple: after centering, the data vectors are projected onto their
principal axes (computed as the eigen-vectors of the variance-covariance matrix)
and then divided by the variance along these axes. In this way, the data cloud is
sphericized, letting appear only the usually non orthogonal axes corresponding
to its higher-order statistical dependencies.

Another way to pre-process data is to perform local normalization. In this
case, each patch x(i) is normalized by subtracting the mean and dividing by the
standard deviation of its elements. For visual data, this corresponds to local
brightness and contrast normalization. One can find in [21] a study of whitening
and local normalization and their effect on a further classification task. However
we can note that this study has been performed using two databases, NORB
and CIFAR, that have been especially designed for object recognition.

We can also note that in [22], the authors argue that whitening speeds-up
the convergence of the algorithm without any justification. It could probably
be related to [3] who showed that the Hessian matrix of the objective function
is a function of the correlation matrix. In this article, we investigate the effect
of whitening and local normalization on the detection of features using a RBM
learning algorithm. These factors, orthogonal to the learning algorithm itself,
can have a large impact on SPR performance.



1/f whitening Another approach to whitening has been introduced by Ol-
shausen [?] firstly to remove the low frequency bias due to the sampling of
square patches in the construction of features detectors in ICA. It is indeed true
that in a suqare patch, the low frequencies are over-represented in the corners.
To avoid this phenomenon, the Fourier transform of each image is filtered using
an isotropic filter the Fourier transform of which is:

Fh(f) = f ∗ e− 1
2 f

2/σ2

(5)

2.2 Unsupervised feature space construction

2.2.1 Gaussian-Bernoulli restricted Boltzmann machines

Unlike a classical Boltzmann machine, a RBM is a bipartite undirected graphical
model θ = {wij , bi, cj}, that learns a generative model of the observed data. It
consists in two layers. The hidden layer, containing latent variables h, is used
to generate the visual layer, containing observed variables v. While generation
P (v|h) is learned, the undirected connections also allow recognition P (h|v). The
two layers are fully connected through a set of weights wij and biases {bi, cj}, and
there are no connections between units of the same layer. For a conventional
RBM, a joint configuration of the binary visible units and the binary hidden
units has an energy function, E(v,h; θ) given by:

E(v,h; θ) = −
∑
i

∑
j

vihjwij −
∑
i∈v

bivi −
∑
j∈h

cjhj . (6)

The probabilities of the state for a unit in one layer conditional to the state
of the other layer can therefore be easily computed. According to Gibbs distri-
bution:

P (v,h; θ) = − 1

Z(θ)
exp−E(v,h;θ), (7)

where Z(θ) is a normalizing constant. Thus after marginalization, the probabil-
ity of a particular hidden state configuration h can be derived as follows:

P (h; θ) =
∑
v

P (v,h; θ) =

∑
v e
−E(v,h;θ)∑

v

∑
h e
−E(v,h;θ)

. (8)

However, according to [4], the above conditional probability can be derived
using the logistic sigmoid function as follows:

P (hj = 1 | v; θ) = σ(cj +
∑
i

wijvi), (9)

where σ(x) = 1/(1 + e−x) is the logistic function. Once the hidden binary states
are computed, we produce a “reconstruction” of the original patch by setting
the state of each visible unit to be 1 with a probability:

P (vi = 1 | h; θ) = σ(bi +
∑
j

wijhj). (10)



However, logistic or binary visible units are not appropriate for multi-valued
inputs like pixel levels, because logistic units are a very poor representation for
data such as patches of natural images. To overcome this problem, as suggested
by [5], in the present work we replace the binary visible units by a zero-means
Gaussian activation scheme as follows:

P (vi = 1 | h; θ)← N (bi +
∑
j

wijhj , σ
2), (11)

where σ2 denotes the variance of the noise. In this case the energy function of
Gaussian-Bernoulli RBM is given by:

E(v,h; θ) =
∑
i∈v

(vi − bi)2

2σ2
i

−
∑
j∈h

cjhj −
∑
i

∑
j

vi
σi
hjwij . (12)

2.2.2 Training RBMs with a sparsity constraint

To learn RBM parameters, it is possible to maximize the log-likelihood in a
gradient ascent procedure. Thus, the derivative of the log-likelihood of the model
over a training set D is given by:

∂

∂θ
L(θ) =

〈
∂E(v, θ)

∂θ

〉
M

−
〈
∂E(v, θ)

∂θ

〉
D

, (13)

where the first term represents an average with respect to the model distribution
and the second an expectation over the data. Although the second term is
straightforward to compute, the first one is often intractable. This is due to the
fact that computing the likelihood needs to compute the partition function, Z(θ),
that is usually intractable. Markov-Chain Monte Carlo methods, like Gibbs
sampling, can be used to approximate this expectation term. These methods,
however, are very slow and suffer from high variance in their estimates.

In 2002, Hinton proposed a quick learning procedure called CD. This learn-
ing algorithm is based on the consideration that minimizing the energy of the
network is equivalent to minimize the distance between the data and a statistical
generative model of it. A comparison is made between the statistics of the data
and the statistics of its representation generated by Gibbs sampling. Therefore,
in CD learning, we try to minimize the Kullback-Leibler Divergence between the
data distribution, Q0, and the model distribution, Q∞ as follows:

CDn = KL(Q0||Q∞)−KL(Q1||Q∞). (14)

The key benefit for the CD is that the intractable term, Q∞, in the above
equation cancels each other out, as explained in [11, 6]. It means that, in practice,
we use usually only few steps of Gibbs sampling (most of the time reduced to
one) to ensure convergence. For a RBM, the weights of the network can therefore
be updated using the following equation:

− ∂

∂wij

(
Q0‖Q∞ −Q1‖Q∞

)
≈ 〈v0i h0j 〉Q0 − 〈vni hnj 〉Q1 . (15)



This equation can be rewritten as follows:

wij ← wij + η(〈v0i h0j 〉data − 〈vni hnj 〉recon.), (16)

where η is the learning rate, v0 corresponds to the initial data distribution, h0

is computed using equation 4, vn is sampled using the Gaussian distribution in
equation 6 and with n full steps of Gibbs sampling, and hn is again computed
from equation 4. Also, for separate biases of visible and hidden neurons, the
update rules are, in analogy to the update rule for the weights:

bi ← bi + η[〈v0i 〉data − 〈vni 〉recon.], (17)

and
cj ← cj + η[〈h0j 〉data − 〈hnj 〉recon.], (18)

where vi, hj , bi, and cj denote the ith visible neuron, the jth hidden neuron, the
ith visible bias, and the jth hidden bias respectively.

Concerning the sparsity constraint in RBMs, we follow the same approach
developed in [38]. This method introduces a regularizer term that makes the
average hidden variable activation low over the entire training examples. Thus,
the activation of the model neurons become also sparse. In fact, this method
is similar to the one used in other models [20]. Thus, as illustrated in [38],
given a training set {v(1), . . . , v(m)} including m examples, we pose the following
optimization problem:

minimize{wij ,bi,cj}−
m∑
l=1

log

(∑
h

P (v(l),h(l))

)
+λ

n∑
j=1

∣∣∣∣p− 1

m

m∑
l=1

E[h
(l)
j |v

(l)]

∣∣∣∣2,
(19)

where E[.] is the conditional expectation given the data, p is the sparsity target
controlling the sparseness of the hidden units hj , and λ is the sparsity cost. Thus,
after involving this regularization in the CD learning algorithm, the gradient of
the sparsity regularization term over the parameters (weights wij and the hidden
biases cj) can be written as follows:

wij ← µ ∗ wij + η ∗
[(

(〈v0i h0j 〉 − 〈vni hnj 〉)
)
− λ ∗ (p− 1

m

m∑
l=1

p
(l)
j ), (20)

cj ← cj + η[〈h0j 〉data − 〈hnj 〉recon]− λ ∗ (p− 1

m

m∑
l=1

p
(l)
j ), (21)

where m in this case is the size of the mini-batch and p
(l)
j , σ(

∑
i v

(l)
i wij + cj).

It has been shown that an sparse RBM learning algorithm can capture inter-
esting high-order features from natural image statistics [38]. The hope is that
such a learning algorithm remains capable to capture higher-order features from
various databases, like a database created for the purpose of robot localization.



2.2.3 Layerwise training for DBNs

RBM can be stacked to generate a DBN architecture, where the model parame-
ters θi, at layer i are trained by keeping the model parameters in the lower layers
constant. In other words, the DBN training algorithm trains the RBM layers
in a greedy layerwise fashion. The model parameters at layer i − 1 are frozen
and the conditional probabilities of the hidden unit values are used to generate
the data to train the model parameters at layer i. This process can be repeated
across the layers to obtain sparse representations of the initial data that will be
used as final input vectors to perform the classification process.

3 Results

3.1 Effect of normalization on the feature space

3.1.1 Studies on the van Hateren’s natural image database

In order to investigate the impact of the data normalization on the detection of
features, we use a popular dataset of natural images, the van Hateren’s database
1. It is a database of high-resolution calibrated monochrome images taken in
defined illumination conditions, designed for various image processing tasks. It
contains approximately 4000 images of 1536x1024 pixels.

For this task, we sampled 100, 000 of 16x16 random patches. These patches
are then whitened using a whitening algorithm and normalized using a local
normalization in two separate pre-processes as shown in figure 1.

Fig. 1: First column: 256 tiny images randomly sampled from the van Hateren
database. Second column: Normalized version. Third column: Whitened
version.

For this task, we have conducted two experiments using a dataset of random
patches sampled from van Hateren database. After whitening and normalizing
these patches in two separate pre-processes as previously said, an over-complete
structure (256− 512) of the first RBM layer was used.

1The van Hateren’s Database is available at: http://www.kyb.tuebingen.mpg.de/?id=227



Figure 2 (left) shows features extracted using the locally normalized data,
while figure 2 (right) shows features extracted using the whitened one. It is
obvious that the features extracted from the whitened data are more localized.
Data whitening clearly changes the characteristics of the learned bases. One
explanation could be that the second order correlations are linked to the presence
of low frequencies in the images. If the whitening algorithm removes these
correlations in the original dataset, it leads to whitened data covering only high
spatial frequencies. The RBM algorithm in this case finds only high frequency
features.

However, the features learned from the normalization data are totally differ-
ent from the ones learned with whitened data. They remain sparse but cover a
broader spectrum of spatial frequencies. An interesting observation is that they
look closer to the ones obtained with convolutional networks [39] for which no
whitening is applied to the initial dataset. We can mention that these differ-
ences between normalized and whitened data have already been observed in [4]
and related to better performances for the normalized data on CIFAR-10 in an
object recognition task.

Fig. 2: Learned over-complete natural image bases. Left: 512 features learned
by training the first RBM layer on normalized image patches (16× 16) sampled
from Van Hateren dataset. Right: The corresponding features learned by train-
ing the first RBM layer on whitened image patches (16× 16) sampled from the
same database. For both experiments, the training protocol is similar to the one
proposed in [38] (300 epochs, a mini-batch size of 200, a learning rate of 0.02,
an initial momentum of 0.5, a final momentum of 0.9, a weight decay of 0.0002,
a sparsity target of 0.02, and a sparsity cost of 0.02).



To try to understand more deeply why features obtained from whitened or
normalized patches are different, we computed the mean Fourier spectral density
of the patches in the two conditions and we compared them to the same function
for the original patches. We plotted the mean of the Log Fourier power spectral
density of all the patches according to the Log of the frequencies shown in figure
3. The scale law in 1/fα characteristic of natural images is approximatively
verified as expected for the initial patches. For the local normalization it is also
conserved (the shift between the two curves is only due to a multiplicative dif-
ference in the signal amplitude between the original and the locally normalized
patches). It means that the frequency composition of the locally normalized im-
ages differs from the initial one only by a constant factor. The relative frequency
composition is the same as in initial images.

Fig. 3: The Log-Log representation of the mean Fourier power spectrum for
image patches with and without normalization. 256 of 16 × 16 patches have
been extracted from the van Hateren database and then normalized. The Log of
the Fourier transform of each of these patches has been computed and plotted
according to the Log of the spatial frequency.

On the contrary, whitening completely abolishes this dependency of the sig-
nal energy with frequency. This means that whitening equalizes the role of each
frequency in the composition of the images 2. This suggests a relationship be-
tween the scale law of natural images and the first two moments of the statistics
of these images. It is interesting to underline that we have here a manifesta-
tion of the link between the statistical properties of an image and its structural
properties (in terms of spatial frequencies). This link is well illustrated by the
Wiener-Khintchine theorem and the relationship between the autocorrelation
function of the image and its power spectral density. Concerning the extracted
features, these observations allow to deduce that an equal representation (in

2That is an expected effect since whitening can be related to white noise, a noise in which
all the frequencies are equally represented.



terms of amplitude) of all the frequencies in the initial signal gives rise to an
over-representation of high frequencies in the obtained features. This could be
due to the fact that, in the whitened data, the energy contained in each frequency
band increases with the frequency while it is constant in initial or normalized
images.

However, the result depends on the database used and consequently on the
spatial frequencies contained in the initial patches. The fact that local normal-
ization preserves (to a constant value) the same frequency composition as in
initial data tends to prove that normalization does not entirely remove second-
order correlations. Olshausen [23] showed that, with whitening, ICA mainly
retains filters in a narrow range of spatial frequencies. Low spatial frequencies
are under-represented in the obtained result. This is clearly what we obtain here
with whitening but not with normalization, which tends to save a broader range
of spatial frequencies.

We can argue that low frequency dependencies are related to the statistical
correlation between neighbor pixels. Thus the suppression of these second order
correlations would suppress these low frequencies in the whitened patches. The
resulting features set is expected to contain a larger number of low frequency
less localized features, what is actually observed.

We are going to see in the next section how the COLD database used to test
our SPR model behaves according to these two normalization methods and how
these changes in spatial frequency composition affect classification performances.

Fig. 4: Left: 256 filters obtained by training a first RBM layer on 32x24
whitened image patches sampled from the COLD database. Right: 256 fil-
ters obtained by training a first RBM layer on 32x24 normalized image patches
sampled from the COLD database. The training protocol is similar to the one
proposed in [8, 38] (300 epochs, a mini-batch size of 100, a learning rate of 0.002,
a weight decay of 0.0002, an initial momentum of 0.5, a final momentum of 0.9,
a sparsity target of 0.02, and a sparsity cost of 0.02).



3.2 Supervised learning of places

3.2.1 The COLD database

The COLD database (COsy Localization Database) was originally developed by
[7] for the purpose of robot localization 3. This database is a collection of labeled
640x480 images acquired at five frames/sec during the robot exploration of three
different laboratories (Freiburg, Ljubljana, and Saarbruecken). Two sets of paths
(standard A and B) have been acquired under different illumination conditions
(sunny, cloudy and night), and for each condition, one path consists in visiting
the different rooms (corridors, printer areas, etc.). These walks across the labs
are repeated several times. Although color images have been recorded during the
exploration, only gray images are used since previous works have demonstrated
that in the case of the COLD database colors are weakly informative and made
the system more illumination dependent [7].

3.2.2 Use of tiny images for classification

The typical input dimension for a DBN is approximately 1000 units (e.g. 30x30
pixels). Dealing with smaller patches could make the model unable to extract
interesting features. Using larger patches can be extremely time-consuming dur-
ing feature learning. Additionally the multiplication of the connexion weights
acts negatively on the convergence of the CD algorithm. The question is there-
fore how could we scale the size of realistic images (e.g. 300x300 pixels) to make
them appropriate for DBNs?

Tiny images have been successfully used [32] for classifying and retrieving
images from the 80-million images database developed at MIT. Torralba showed
that the use of tiny images combined with a DBN approach led to code each
image by a small binary vector defining the elements of a feature alphabet that
can be used to optimally define the considered image. The binary vector acts
as a bar-code while the alphabet of features is computed only once from a rep-
resentative set of images. The power of this approach is well illustrated by the
fact that a relatively small binary vector (like the ones we use as the output of
our DBN structure) largely exceeds the number of images that have to be coded
even in a huge database (2256 ≈ 1075). So, for all these reasons we have chosen
image reduction. Thus, as proposed by [32] the image size is reduced to 32x24
(see for instance figure 5). The final set of tiny images (a new database called
tiny-COLD) is centered and whitened/normalized in order to eliminate order 2
statistics. Consequently the variance in equation 6 is set to 1. Contrarily to
Torralba, the 32× 24 = 768 pixels of the whitened/normalized images are used
directly as the input vector of the network.

As in [?] we adopted a 768−256−128 structure for the network. The features
shown in figure 4 (left) have been extracted by training the first RBM layer
on 137, 069 whitened image patches (32 × 24 pixels) sampled from the COLD
database. Some of them represent parts of the corridor, which is over-represented

3The COLD Database is available at: http://cogvis.nada.kth.se/COLD/
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Fig. 5: Samples of the initial COLD database. The corresponding 32 × 24 tiny
images are displayed bottom right. One can see that, despite the size reduction,
these small images remain fully recognizable.

in the database and correspond to long sequences of images quite similar during
the robot exploration. Some others are localized and correspond to small parts of
the initial views, like edges and corners, that can be identified as room elements
(i.e. they are not specific of a given room). The features shown in figure 4 (right)
have been obtained using the normalized data. As previously observed for the
van Hateren’s database, the obtained features look very different. Parts of rooms
are much more represented than for the whitened database and it seems that
the range of spatial frequencies covered by the features is much broader. For
both cases, the combinations of these initial features in higher layers correspond
to larger structures more characteristic of the different rooms.

After achieving the appropriate coding based on DBNs, a classification was
performed in the features space as shown in figure 6. As in [?] a simple regres-
sion method was used to perform the classification process in the initial case. To
express the final result as a probability that a given view belongs to one room,
we normalize the output with a softmax regression method. We have also inves-
tigated the classification phase using a nonlinear classifier, like Support Vector
Machine (SVM). The motivation to use a nonlinear classifier is to demonstrate
that the DBN computes a linear separable signature and thus deosn’t affect the
final classification results.

The samples taken from each laboratory and each different condition of illu-
mination were trained separately as in [38]. For each image the softmax network
output gives the probability of being in each of the visited rooms. According
to maximum likelihood principles, the largest probability value gives the de-
cision of the system. When we use features learned from the whitened data,
we obtain an average of correct answers ranging from 65% to 80% according
to the different conditions and laboratories as shown in figure 6 (first column).
More precisely, we obtain 73.4%, 69.5%, and 71% for COLD-Ljubljana, COLD-
Freiburg, and COLD-Saarbruecken laboratories respectively and with an overall
average of correct answers of 71.3% for the three laboratories. In contrast, when
we use features learned from the normalized data, we obtain an average of cor-



Fig. 6: Average classification rates from the three different laboratories. Left
column: Whitened data. Right column: Normalized data.

rect answers ranging from 71% to 90% according to the different conditions and
laboratories as shown in figure 6 (second column). More precisely, we obtain
83.13%, 80.515%, and 81.5% for COLD-Ljubljana, COLD-Freiburg, and COLD-
Saarbruecken laboratories respectively and with an overall average of correct
answers of 81.375% for the three laboratories. The latter results are then at the
level of the best published ones [38]. The results remain robust to illumination
variations as in [38].

These results demonstrate that, for classification, features trained on nor-
malized data outperformed those obtained from an RBM trained on whitened



data. It illustrates the fact that the normalization process keeps much more
information or structures of the initial views which are very important for the
classification process. On the other hand, data whitening completely removes
the first and second order statistics from the initial data which allows DBNs
to extract higher-order features. This demonstrates that data whitening is not
the optimal pre-processing method in the case of image classification. This is in
accordance with the results in the literature showing that first and second order
statistics based features are significantly better than higher order statistics in
terms of classification [24, 4].

As in our previous works we have compared our results to the use of proba-
bilistic thresholding. The detection rate presented in figure 6 has been computed
from the classes with the highest probabilities, irrespective of the relative values
of these probabilities. Some of them are close to the chance (in our case 0.20
or 0.25 depending on the number of categories to recognize) and it is obvious
that, in such cases, the confidence in the decision made is weak. Thus below
a given threshold, when the probability distribution tends to become uniform,
one could consider that the answer given by the system is meaningless. This
could be due to the fact that the given image contains common characteristics
or structures that can be found in two or more classes. The effect of the thresh-
old is then to discard the most uncertain results. Figure 7 (first column) shows
the average classification results for a threshold of 0.55 (only the results where
maxX p(X = ck|I) ≥ 0.55, where p(X = ck is the probability that the current
view I belongs to ck, are retained). These results have been achieved using the
features extracted from the whitened data. In this case, the average acceptance
rate (the percentage of considered examples) ranges from 75% to 85%, depend-
ing on the laboratory, and the average results show values that outperform the
best published ones [35]. When considering all the results obtained by training
and testing on similar illumination conditions, we got an average classification
rate of 90.68% for COLD-Saarbrucken laboratory, 89.88% for COLD-Freiburg
laboratory and 90.66% for COLD-Ljubljana laboratory. Similarly to [35] results,
the performance has decreased in case of the experiments under varying illumi-
nation conditions. In this case we have achieved classification rates of 83.683%
for COLD-Saarbrucken laboratory, 83.14% for COLD-Freiburg laboratory and
84.62% for COLD-Ljubljana laboratory.

Similarly, we have also applied the threshold method on the results obtained
in figure 6 (right) with locally normalized data. Figure 5.9 (second column)
shows the average classification results using a similar threshold (0.55). In this
case, the average rate of acceptance examples increases to be between 86% to
90%, depending on the laboratory, showing that more examples are used in the
classification than the former experiment. Also, the average results, in this case,
show scores that strongly outperform the best published one [Ullah et al., 2008].
This indicates that the linear separability of the data was significantly improved
in the case of using the normalized data for features extraction.

Concerning the sensitivity to illumination for both cases, our results seem to
be less sensitive to the illumination conditions compared to the results obtained



Fig. 7: Average classification rates from the three different laboratories with a
threshold of 0.55. Left column: Whitened data. Right column: Normalized
data.

in [Ullah et al., 2008]. As in previous experiments, we noted the lower perfor-
mance on the COLD-Freiburg data, which confirms that this collection is the
most challenging of the whole COLD database as indicated in [35]. However,
in case of using features learned from the un-whitened data, with and without
threshold our classification results for this laboratory outperforms the best ones
obtained by [35].

Tables 1 and 2 show an overall comparison of our results with those from
[35] for the three training conditions in a more synthetic view. It also shows
the results obtained using a SVM classification instead of a softmax regression.



The results are quite comparable to softmax showing that the DBN computes
a linearly separable signature. They underline the fact that features learned by
DBNs approach are more robustness for a semantic place recognition task than
the extraction of ad hoc features based on (gist, CENTRIST, SURF, SIFT).

Laboratory name Saarbruecken Freiburg LjubljanahhhhhhhhTraining

Condition
Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

Ullah 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77%

No thr. 70.21% 70.80% 70.59% 70.43% 70.26% 67.89% 72.64% 72.70% 74.69%

SVM 69.92% 71.21% 70.70% 70.88% 70.46% 67.40% 72.20% 72.57% 74.93%

0.55 thr. 84.73% 87.44% 87.32% 85.85% 83.49% 86.96% 84.99% 89.64% 85.26%

Table 1: Average classification results. Whitened data. First row: Ullah’s
work; second row: rough results without threshold; third row: classification
rates using a SVM classifier; fourth row: classification rates with threshold as
indicated in text.

Laboratory name Saarbruecken Freiburg LjubljanahhhhhhhhTraining

Condition
Cloudy Night Sunny Cloudy Night Sunny Cloudy Night Sunny

Ullah 84.20% 86.52% 87.53% 79.57% 75.58% 77.85% 84.45% 87.54% 85.77%

No thr. 80.41% 81.29% 83.66% 81.65% 80.08% 79.64% 83.14% 82.38% 83.87%

0.55 thr. 86.00% 88.35% 87.36% 88.15% 85.00% 87.98% 85.95% 90.63% 86.86%

Table 2: Average classification results. Normalized data. First row: Ullah’s
work; second row: rough results without threshold; third row: classification
rates with threshold as indicated in text.

4 Conclusion and future work

Discussion on the ratio between the whole image and the patches

The aim of this paper was to investigate the role of normalization in feature
extraction and image classification based on DBNs.

The main observation done in this work was that the normalization method
greatly affects the spatial frequency content of the images. One immediate con-
sequence is that the features extracted by the two methods strongly differ each
from each other. We have shown that whitening suppresses the scale law usually
found in natural images.
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