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Abstract

The growing demand for precise and reliable biomarkers in psychiatry is fueling

research interest in the hope that identifying quantifiable indicators will improve

diagnoses and treatment planning across a range of mental health conditions. The

individual properties of brain networks at rest have been highlighted as a possible

source for such biomarkers, with the added advantage that they are relatively

straightforward to obtain. However, an important prerequisite for their consideration

is their reproducibility. While the reliability of resting-state (RS) measurements has

often been studied at standard field strengths, they have rarely been investigated

using ultrahigh-field (UHF) magnetic resonance imaging (MRI) systems. We investi-

gated the intersession stability of four functional MRI RS parameters—amplitude of

low-frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the

spontaneous brain activity), regional homogeneity (ReHo; measure of local connectiv-

ity), and degree centrality (DC; measure of long-range connectivity)—in three RS net-

works, previously shown to play an important role in several psychiatric diseases—

the default mode network (DMN), the central executive network (CEN), and the

salience network (SN). Our investigation at individual subject space revealed a strong

stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stabil-

ity in fALFF. Furthermore, the internetwork connectivity between each network pair

was strongly stable between CEN/SN and moderately stable between DMN/SN and

DMN/SN. The high degree of reliability and reproducibility in capturing the proper-

ties of the three major RS networks by means of UHF-MRI points to its applicability

as a potentially useful tool in the search for disease-relevant biomarkers.
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1 | INTRODUCTION

The increasing demand for precision psychiatry during the last

decades (Insel & Cuthbert, 2015) has led to an awareness of the need

to establish reliable biomarkers for mental health and different psychi-

atric conditions. According to the National Institutes of Health Bio-

markers Definitions Working Group, biomarkers are “a characteristic

that is objectively measured and evaluated as an indicator of normal

biological processes, pathogenic processes, or pharmacologic

responses to a therapeutic intervention.” (Biomarkers Definitions

Working Group, 2001). Consequently, valid biomarkers are increas-

ingly seen as essential for both the precise diagnosis of complex men-

tal disorders and for reliable therapy monitoring.

Since the discovery of temporal correlations obtained by blood-

oxygen-level-dependent (BOLD) signal fluctuations during rest in the

1990s (Biswal, Zerrin, Haughton, & Hyde, 1995), the resting-state

(RS) research approach has been increasingly used to map regional

interactions in the brain and has considered to have a promising

potential in the search for biomarkers for brain-related disorders

(Blautzik et al., 2013; Washington et al., 2013). Indeed, numerous

investigations confirm that the human brain is organized into dynamic,

intrinsic, resting-state functional networks (rsNW; Cabral,

Kringelbach, & Deco, 2017; Fox et al., 2005; Smith et al., 2013), and

the link between serious mental illnesses and abnormal brain connec-

tivity is gaining widespread acceptance (Woodward & Cascio, 2015).

Thus, features and patterns derived from spontaneous brain activity

and functional connectivity (FC) could be considered as potential neu-

rophysiological biomarkers for various psychopathological phenomena

across neuropsychiatric disorders (Blatow, Nennig, Durst, Sartor, &

Stippich, 2007; Imperatori et al., 2020).

Resting-state functional MRI (rs-fMRI) measures functional con-

nections in the brain via the temporal correlation of low-frequency

(0.01 < f < 0.1 Hz) fluctuations in the BOLD fMRI signal. These fluctu-

ations reflect synchronized variations in spontaneous neuronal firing

and unconstrained mental activity (e.g., mind wandering; Biswal

et al., 1995; Fox & Raichle, 2007; Mason et al., 2007). The main

advantage of measuring FC using MRI is its noninvasive nature. Fur-

thermore, the participant is not required to complete an instructed

task, meaning that the results are not influenced by the task demands

or the efforts and motivation of the participants. Consequently, FC

examinations can be considered to be objective. Furthermore, rs-fMRI

examinations are well tolerated by most subjects including patients

with severe symptomatology and require a reasonably short acquisi-

tion time. Thereby, some authors state that acquisition times of about

6 min have provided adequate sampling to obtain robust results (Van

Dijk et al., 2010), whereas others recommend, when possible, longer

acquisitions (about 12 min; Hacker, Roland, Kim, Shimony, &

Leuthardt, 2019). However, despite the broad applicability, it has to

be kept in mind that rs-fMRI measurements may be hampered by min-

imal head motions as well as by several physiological effects

(e.g., respiration and cardiac pulsatility) and various imperfections in

MRI system hardware (e.g., heating of the imaging gradients during

experiments; Maknojia, Churchill, Schweizer, & Graham, 2019), thus

the preprocessing requires a high degree of diligence.

So far, the transition toward the use of RS connectivity patterns

as a biomarker in clinical practice has not yet occurred. Among other

things, this requires a better understanding of the microscale brain

organization. The development of ultrahigh-field (UHF) neuroimaging

technologies, that is, UHF-MRI, offer the potential to bridge this

shortcoming (Bazin et al., 2014; Dinse et al., 2013; Geyer, Weiss,

Reimann, Lohmann, & Turner, 2011). One important consideration

hereby is the recognition of the good tolerability of the most UHF-

MRI systems (Theysohn et al., 2007).

The usage of UHF-MRI entails several advantages. The benefits

include increased spatial sampling in the native image, and thus a high

spatial resolution (which decreases partial volume effects; Newton,

Rogers, Gore, & Morgan, 2012) improved signal-to-noise ratio

(Triantafyllou et al., 2005), increased sensitivity (Kraff, Fischer, Nagel,

Mönninghoff, & Ladd, 2014), enhanced amplitude, and percent of sig-

nal change in BOLD signal (Sladky et al., 2013; van der Zwaag

et al., 2009), significantly accentuated microvasculature contributions

(Duong et al., 2003), and significantly reduced nonspecific mapping

signals from large vessels, which together can lead to a deeper under-

standing of the intrinsic properties of functional brain networks

(De Martino et al., 2011; Gorgolewski et al., 2015; Holiga et al., 2018).

Moreover, these factors considerably increase the quantity of data

obtained per scan and enable the consideration of the individual

examination.

However, besides the clear advantages provided by UHF-MRI,

certain drawbacks must also be taken into account. Commonly dis-

cussed disadvantages include some physiological considerations (more

intensively pronounced unpleasant transient effects such as vertigo

and nausea discomfort (Rauschenberg et al., 2014) but also some

technical aspects. As field strength increases, field inhomogeneity—

both in the local magnetic field (B0) due to increased magnetic sus-

ceptibility effects and in the radiofrequency transmit and receive

fields (B1+ and B1�) due to dielectric effects—can cause image arti-

facts such as geometric distortion and image intensity biases over the

brain (Polimeni, Renvall, Zaretskaya, & Fischl, 2018). This may particu-

larly affect single-shot echo-planar imaging (EPI), which represents the

mainly used application in fMRI imaging (Preibisch, Castrill�on,

Bührer, & Riedl, 2015). Besides geometrical distortions, the technical

challenges further include position-dependent flip angle, poor inver-

sion, unexpected contrast, intravoxel dephasing as well as increased
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tissue-specific absorption rates (SAR) and susceptibility-induced mag-

netic field variations within a region of interest (ROI; Ladd

et al., 2018). The search for adequate solutions to the issues men-

tioned above has progressed but is far from being complete (Düzel,

Costagli, Donatelli, Speck, & Cosottini, 2021; Ladd et al., 2018).

One of the most important requirements for valid biomarkers is

reproducibility (Strimbu & Tavel, 2010). In this context, numerous

studies have investigated the reliability of RS measurements using

MRI at 1.5 and 3.0 Tesla (Braun et al., 2012; Klomp et al., 2013;

Manoach et al., 2001; Plichta et al., 2012; Q. Zou et al., 2015) and

have demonstrated reproducible results. For example, Somandepalli

and colleagues examined reliability within and across diagnostic

groups of children with attention-deficit/hyperactivity disorder and

typically developing children (Somandepalli et al., 2015). They also

examined voxel-wise reliability between groups. Their results demon-

strated moderate-to-high reliability across all children and within

groups and additionally found that the higher-order functional net-

works showed more than the lower one (Somandepalli et al., 2015).

Z. Li, Kadivar, Pluta, Dunlop, and Wang (2012) examined the repro-

ducibility of different fMRI matrices, such as seed region-based FC,

regional homogeneity (ReHo), and the amplitude of low-frequency

fluctuation (ALFF), in the RS brain and demonstrated the test–retest

reproducibility for ReHo and ALFF in the whole gray matter.

Moreover, long-term reproducibility studies have also shown

good results. Song, Panych, and Chen (2016) demonstrated that sub-

stantial to moderate long-term within-subject reproducibility can be

achieved in rs-fMRI by applying data-driven and predefined ROI-

based quantification of reproducibility. Chou, Panych, Dickey, Petrella,

and Chen (2012) also examined the long-term reproducibility of intrin-

sic connectivity networks and reported that RS intrinsic connectivity

network parameters might be appropriate biomarkers for monitoring

disease progression and treatments.

Although studies relating to the stability of FC measurements at

standard field strengths are relatively abundant, far fewer have been

conducted at UHF. Recently, Geissberger et al. (2020) investigated

the reproducibility of amygdala activation in facial emotion processing

at 7 Tesla and found fair to good intersession reliability and excellent

reliability for averages over runs. In another study, Berboth,

Windischberger, Kohn, and Morawetz (2021) investigated the voxel-

wise test–retest reliability of brain activity in response to an emotion

regulation task for predefined ROIs implicated in four neural net-

works. Although test–retest reliability varied considerably across the

emotion regulation networks and respective ROIs, high reliability was

found in core emotion regulation regions, including the ventrolateral

and dorsolateral prefrontal cortex (vlPFC and dlPFC) as well as the

middle temporal gyrus (MTG).

Finally, Branco, Seixas, and Castro (2018) used a publicly released

data set from the consortium for reliability and reproducibility (Zuo &

Xing, 2014) to examine the temporal reliability of the sensorimotor

and language networks. The authors reported good temporal reliabil-

ity at short and medium time scales, as demonstrated by high values

of overlap in the same session and 1 week after, for both networks.

The results were also shown to be stable, irrespective of data quality

metrics and physiological variables.

Given the paucity of research into the reliability of the properties

of the core RS networks at UHF, this study aims to address this issue

with a focus on three established RS networks—the default mode net-

work (DMN), the central executive network (CEN), and the salience

network (SN)—often subsumed as the triple-network model (TNM).

The networks of the TNM are considered to be the core of

neurocognitive networks due to the involvement in a wide range of

cognitive tasks (Menon & Uddin, 2010). Moreover, disruption in the

synchronized activity of the triple networks has been implicated in

various psychiatric diseases (Dong, Wang, Chang, Luo, & Yao, 2017;

Jiang et al., 2017; C. Li et al., 2019; Menon, 2011) that often show

overlapping dysfunctions particularly in those three networks. In the

meantime, it is widely accepted that coordination of these networks

plays a key regulatory role in organizing neural responses underlying

fundamental brain functions (Nekovarova, Fajnerova, Horacek, &

Spaniel, 2014) and it has been proposed that a deepening of the

knowledge considering the TMN may be essential to understand

pathophysiological dysfunction across several psychiatric disorders, as

dysfunction in one network may affect the other two (Menon, 2011).

Thus, we chose to use the publicly available data set obtained

from the Gorgolewski project (Gorgolewski et al., 2015) to investigate

the stability of these three core RS networks in terms of the inter-

session stability of the fMRI parameters and the stability of the inter-

network correlations between the triple networks. The following four

fMRI parameters were used to characterize the different properties of

the brain networks: both ALFF (Yu-Feng et al., 2007) and fractional

ALFF (fALFF; Q.-H. Zou et al., 2008) were used to evaluate the

regional spontaneous activity. Specifically, ALFF indicates the strength

of regional spontaneous brain activity, while fALFF represents the rel-

ative contribution of specific low-frequency fluctuation to the whole

frequency range. The ReHo (Zang, Jiang, Lu, He, & Tian, 2004) was

used to investigate local FC; and the degree centrality (DC; Zuo et al.,

2012), was used to investigate global FC. Thus, ReHo and DC are con-

sidered to be mutually complementary for detecting both local and

remote brain activity synchronization (Cui et al., 2016). Together with

the ALFF and fALFF parameters, these fMRI metrics enable compre-

hensive rsNW characterization, displaying a pattern of RS activity,

regional temporal integration, and connectivity.

2 | METHODS

2.1 | Subjects

The data used in this study were taken from the open-access data set

(Gorgolewski et al., 2015). The original data set consisted of 22 healthy

subjects (12 male and 10 female). We excluded six subjects due to

head motion and technical issues. The exact reasons for the exclusion

are given in Table S1. Therefore, our final data set originated from

16 subjects (9 male and 7 female) age range 22–29 years; mean

25.25 ± 2.01. According to the original publication, all subjects signed

written informed consent. The study was performed in accordance

with the declaration of Helsinki and was approved by the Ethical

Committee of the Leipzig University.
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2.2 | Experimental procedure

The full experimental procedure is described in the original publication

of Gorgolewski et al. (2015). All subjects were examined twice using a

7-Tesla whole-body MRI scanner (MAGNETOM 7 Tesla, Siemens

Healthcare, Erlangen, Germany). The time between the two sessions

was 1 week. Both examinations involved RS fMRI measurements. The

focus of our investigation is on the results reported from the 15-min

RS sessions.

2.3 | MR data acquisition

During the RS scanning sessions, the subjects were asked to remain

awake, keep their eyes open, and focus on a cross. The subjects were

also asked to abstain from drinking caffeinated products for at least

2 h before each scan.

All imaging protocols are presented in the original publication of

Gorgolewski et al. (2015). MR data were acquired using a 7-Tesla

whole-body scanner (MAGNETOM 7 T, Siemens Healthcare,

Erlangen, Germany). A combined transmit receive head coil (consisting

of a birdcage transmitter and 24 channels phased array receiver;

NOVA Medical Inc, Wilmington, MA, USA) was used for imaging. The

fMRI data were acquired using an EPI two-dimensional sequence.

Data were acquired in the axial orientation. Three hundred volumes

were acquired in 15 min for each RS run with the following parame-

ters: repetition time (TR) = 3,000 ms, echo time (TE) = 17 ms, partial

Fourier 6/8, GRAPPA acceleration factor iPAT = 3, flip angle

(FA) = 70�, field-of-view (FOV) = 192 � 192 mm, imaging matrix

128 � 128 � 70 slices, slice thickness = 1.5 mm, and voxel size

1.5 mm3.

High-resolution T1-weighted images were acquired using a three-

dimensional magnetization prepared rapid gradient echo (3D MP-

2RAGE) sequence (TR = 5 s, TE = 2.45 ms, TI1/2 = 0.9/2.75 s, partial

Fourier 6/8, GRAPPA acceleration factor iPAT = 2, FA1/2 = 5�/3�,

FOV = 224 � 224 � 168 mm3, imaging matrix 320 � 320 � 240, and

voxel size 0.7 mm3).

2.4 | fMRI data preprocessing and analysis

The fMRI images were preprocessed using data processing and analy-

sis for brain imaging (Yan, Wang, Zuo, & Zang, 2016) and SPM12

(http://www.fil.ion.ucl.ac.uk/spm/) toolboxes built on MATLAB soft-

ware package version 2017b (The Math Works, Inc., Natick, MA,

USA). The preprocessing was performed as follows: the first 10 vol-

umes were removed, followed by slice timing correction, realignment

of images and field map correction, individual T1 images were co-

registered to the functional images. The transformed T1 images were

segmented to grey matter, white matter (WM), and cerebrospinal fluid

(CSF). Then the Friston 24-parameter model was used to remove the

nuisance signals by regressing out the head motion effects from the

realigned data. Also, the signals from WM and CSF were regressed

out to reduce the impact of physiological noise. As motion could influ-

ence the FC results, the Friston 24-parameter model and framewise

displacement were used to estimate any head motion at the subject

level. Any subjects who had head motion exceeding 1.5 mm in transla-

tion or 1.5� in rotation were excluded (Table S1). Afterward, to keep

only the high-quality data, motion scrubbing was applied to remove

minimal motion frames (volumes exhibiting framewise displacement

>0.2 mm were excluded). After scrubbing, the percentage of volumes

left for each subject and session is reported in Table S2. Then the

fMRI parameters were computed in the native space. Default masks

(whole brain, white matter, gray matter, and CSF) were generated

based on the segmented T1 image and then were applied before com-

puting the fMRI parameters. ALFF value was calculated by trans-

forming the BOLD signal time series to the frequency domain using

the fast Fourier transformation, then the power spectrum was

obtained. Later ALFF is calculated as the sum of amplitudes within a

low-frequency band of 0.01–0.1 Hz for each voxel (Yu-Feng

et al., 2007). The fALFF value was calculated dividing the power

within the low-frequency range (ALFF) by the total power in the

entire measurable frequency range (Zuo et al., 2010). Later temporal

filtering between 0.01 and 0.1 Hz was applied to all voxels time series

on the preprocessed fMRI data to calculate DC and ReHo. The DC

was computed by calculating Pearson's correlation coefficient

between the time series of a given voxel and all other gray matter

voxels in the brain. The correlation vector was binarized by applying a

threshold (r > .25, p ≤ .001) and added (Takeuchi et al., 2015). The

ReHo was computed by averaging the synchronization or similarity

between the time series of a given voxel and its 26 neighboring voxels

using Kendall's coefficient of concordance (Zang et al., 2004). The

fMRI parameters were normalized using a Z-score standardization

procedure (subtracting the mean from each voxel and then dividing

the value by the SD of the whole brain). Finally, spatial smoothing with

full width at half maximum (FWHM) at 3 mm3 was applied.

2.5 | Triple-network ROIs

The publicly available data set was used to specifically extract and

analyze the triple RS networks. The TNM included 15 ROIs, which

were selected following the specifications from networks atlas pro-

vided by the Conn toolbox (Whitfield-Gabrieli & Nieto-

Castanon, 2012). The masks for the DMN and CEN consisted of four

ROIs each, and the SN mask included seven ROIs. Concretely, the

DMN included the medial prefrontal cortex (MPFC), the left and right

lateral parietal cortex and the posterior cingulate cortex (PCC). The

CEN included the right and left lateral prefrontal cortex (rPFC, lPFC)

and the right and left posterior parietal cortex (PPC). The SN included

the anterior cingulate cortex (ACC), the left and right anterior insula,

the left and right rostral prefrontal cortex, and the left and right sup-

ramarginal gyrus. The masks for the three networks are shown in

Figure 1.
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2.6 | ROI-based FC analysis

To keep the original spatial resolution of the functional images, the

defined masks were warped into the individual space, and then the con-

nectivity between the ROIs within the triple networks was computed by

extracting themeanBOLDsignal time series fromeach of three networks'

ROI. Pearson's correlation coefficient was computed between each pair

of the ROI's mean BOLD signal time series, resulting in two 15 � 15 con-

nectivity matrices for each subject. Fisher's r to z transformation was

applied for all connectivitymatrices to improve the normality.

2.7 | Stability analysis

2.7.1 | Intersession stability of the fMRI parameters
in the triple networks

We used Lin's concordance correlation coefficient (CCC) instead of

Pearson's correlation because it estimates the variation from the 45�

line (L. I. Lin, 1989; McBride, Lin, Bland, & Altman, 2005), thus, the

CCC gives more accurate reliability results. Lin's CCC (ρcÞ was calcu-

lated using the following formulas (1–8) (L. I. Lin, 1989; L. Lin,

Hedayat, Sinha, & Yang, 2002; McBride et al., 2005):

ρc ¼
2σyx

σy2þσx2þ μy�μx
� �2

, ð1Þ

where the mean (μx) of each fMRI parameter in each session was com-

puted as follows:

μx ¼
1
n

Xn

n¼1
xn: ð2Þ

The variance (σ2x ) within each session for each fMRI parameter was

computed as follows:

σ2x ¼
1
n

Xn

n¼1

xn�μxð Þ2: ð3Þ

The covariance (σyx) between two sessions for each fMRI parameter

was computed as follows:

σyx ¼1
n

Xn

n¼1
yn�μy
� �

xn�μxð Þ: ð4Þ

The CCC can also be written as a product of accuracy and precision

ρc ¼ χaρ, where precision ρ is Pearson's correlation coefficient and

accuracy is the term χa given by the equation:

χa ¼
2

ϖþ 1
ϖþv2

, ð5Þ

where

v2 ¼ μy�μx
� �2

σyσx
, ð6Þ

and

ϖ¼ σy
σx

: ð7Þ

Also, the sample counterpart of CCC is given by

rc ¼ 2rSySx

Sy
2þSx

2þ y�xð Þ2
, ð8Þ

where the r is sample Pearson's correlation coefficient, y and x are the

sample means, and the
Sy

2 and Sx
2 are the sample variances.

The four fMRI parameters (ALFF, fALFF, ReHo, and DC) were

extracted from the triple-network voxels for all subjects in both ses-

sions. The extracted values were used to calculate the voxel-based

CCC at the subject level. CCC was calculated using MATLAB-based

function f_CCC available at https://github.com/robertpetermatthew/

f_CCC/blob/master/f_CCC.m (Robert Matthew 2020). CCC including

the confidence interval for the same was calculated with an adjusted

significance threshold (α) of .00026. The significance threshold was

precomputed accounting for multiple comparison correction via

Bonferroni method (Chen, Feng, & Yi, 2017). Since 16 subjects were

F IGURE 1 Depiction of the masks for the three core resting state
networks: the default mode network (DMN, blue color), the central
executive network (CEN, red color), and the salience network (SN,
green color) overlaid on MNI152 template. CEN, central executive
network; DMN, default mode network; SN, salience network
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tested for four fMRI parameters in three RS networks, a total of

192 tests were made. This resulted in adjusted significance threshold

(α) of .05/192 = .00026. The computed CCC value and the confi-

dence intervals with adjusted alpha are reported in Table S3.

The mean of the intermeasurement stability for the fMRI parame-

ters in each network was calculated. Thereby, the Dancey and Reidy

scale was applied to interpret Pearson's and Spearman's correlation

coefficients (Dancey & Reidy, 2004). Thus, correlation coefficients

<.40 were considered to be weak, values between .40 and .69 were

considered moderate, values between .70 and .99 were considered

strong, and correlation coefficients of 1.00 were considered perfect.

As the CCC should be interpreted close to other correlation coeffi-

cients (e.g., Pearson's; Altman & Altman, 1999; Akoglu, 2018), we

used the same scale for assessing both the inter-session stability of

the fMRI parameters and the stability of the internetwork

correlations.

2.7.2 | Stability of the internetwork correlations
between the three networks

To calculate the stability of the FC between the three networks, the

internetwork connectivity matrices of the triple networks were com-

puted for each session. Subsequently, Spearman's correlation coeffi-

cients between the connectivity values in each pair of networks, in

each session, at a significance level of p < .01 were calculated as

shown in Figure 2. False discovery rate (FDR) was used to correct for

multiple comparison. The mean value of Spearman's correlation coef-

ficients for each pair of networks was then calculated. Spearman's

correlation was used instead of Pearson's correlation owing to the

small sample size (4, 4, and 7 ROIs in the DMN, CEN, and SN,

respectively).

3 | RESULTS

3.1 | Intersession stability of the fMRI parameters
in the triple networks

The mean values of the fMRI parameters (ALFF, f/ALFF, ReHo, and

DC) across 16 subjects obtained in each session are visualized in

Figure 3. The visual inspection reveals stable levels of ALFF and

fALFF) as well as DC and ReHo.

The values of the CCCs, representing the intraindividual,

intermeasure stability of the fMRI parameters for each participant in

each network, are shown in Table 1.

Figure 4 illustrates the mean of the intermeasurement stability

for the fMRI parameters in each network

We observed the highest mean stability of ALFF parameter to be

in both the DMN (0.90 ± 0.07; range from 0.72 to 0.96; strong stabil-

ity) and the SN (0.90 ± 0.06; range from 0.74 to 0.95; strong stability)

closely followed by the CEN (0.87 ± 0.07; range from 0.69 to 0.95;

strong stability).

The mean stability of fALFF parameter was moderate in all three

networks: DMN: 0.66 ± 0.16 (range from 0.19 to 0.85); CEN: 0.60

± 0.19 (range from 0.02 to 0.90); SN: 0.54 ± 0.25 (range from �0.20

to 0.83).

The mean stability of ReHo parameter was found to be strong in

all three networks: DMN: 0.86 ± 0.08 (range from 0.64 to 0.93); CEN:

0.84 ± 0.09 (range from 0.56 to 0.94); SN: 0.83 ± 0.07 (range from

0.69 to 0.91).

The mean stability of DC parameter was found to be strong in all

three networks: SN: 0.73 ± 0.16 (range from 0.24 to 0.92); CEN: 0.71

± 0.15 (range from 0.25 to 0.90); DMN: 0.70 ± 0.17 (range from 0.32

to 0.89).

3.2 | Stability of the internetwork correlations
between the three networks

The ROI-based FC correlation matrix obtained during each of the two

measurements is shown in Figure 5, and the concrete values are given

in the Tables S4 and S5. Spearman's correlation coefficients rep-

resenting the stability of the internetwork FC between the triple net-

works at the individual level are shown in Table 2. Also, the mean

values of Spearman's correlation coefficients for each pair of net-

works are shown in Figure 6.

The internetwork connectivity showed a strong to moderate sta-

bility between the investigated network pairs: between DMN and SN:

0.69 ± 0.17 (range from 0.36 to 0.94); between DMN and CEN: 0.62

± 0.20 (range from 0.12 to 0.94); between CEN and SN: 0.77 ± 0.11

(range from 0.60 to 0.91). Bars represent standard deviation.

4 | DISCUSSION

The aim of this study was to investigate the stability of the properties

of three core RS networks (DMN, CEN, and SN) and the reliability of

F IGURE 2 Schematic representation of the calculation procedure
for assessing internetwork stability. We first calculated the
connectivity between each network pair in each session, and
Spearman's correlation coefficients were then calculated from those
values to determine the inter-session stability of the internetwork
connectivity
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the connectivity between these networks based on the Conn Atlas

(Whitfield-Gabrieli & Nieto-Castanon, 2012). The analysis was per-

formed using a publicly available open-access data set (Gorgolewski

et al., 2015) obtained at a 7-Tesla UHF-MRI scanner. The study was

motivated by the question of whether RS data from UHF examina-

tions could be used for extraction of biomarkers to potentially support

diagnosis as well as therapy planning and monitoring) in psychiatric

disorders.

In terms of intersession stability, our investigation revealed CCCs

of a moderate to strong level. Specifically, the strongest stability was

observed for the ALFF parameter that showed a strong stability in all

three networks. This observation confirms previous reports about the

high test–retest reproducibility of different parameters characterizing

the spontaneous brain activity obtained at standard field strengths

(Jia et al., 2020; Z. Li et al., 2012; Somandepalli et al., 2015; Zuo,

Biswal, & Poldrack, 2019; Zuo & Xing, 2014). Generally, the ALFF

reflects spontaneous neural activity of the brain (Zuo et al., 2010). In

recent years, ALFF has been increasingly applied to characterize neu-

ropsychiatric disorders, such as attention deficit and hyperactivity

disorder (Zang et al. 2007), Alzheimer's disease (He et al., 2007), mild

cognitive impairment (Han et al., 2012), bipolar disorder (J. Liu

et al., 2012), schizophrenia (Hoptman et al., 2010; Turner, 2013),

Tourette's syndrome (Cui et al., 2014) and obsessive–compulsive dis-

order (Bu et al., 2019).

In parallel to ALFF, we also analyzed the stability of fALFF, which

is considered as an improved approach to ALFF detection (Q.-H. Zou

et al., 2008), and in particular measures the relative contribution of

low-frequency fluctuations within a specific frequency band with

respect to the whole detectable frequency range (Zuo et al., 2010).

Thus, it enables the amplitude of regional neuronal activity to be stud-

ied, potentially identifying brain areas with abnormal local functioning

(Chen et al., 2015). In our study, the stability of the fALFF values was

moderate in all three networks. This somewhat lower stability of

fALFF compared with ALFF is in concordance with come previous

reports (Küblböck et al., 2014; Yan, Craddock, Zuo, Zang, &

Milham, 2013; Zuo et al., 2010). While ALFF is more receptive for the

potential artifactual in the neighborhood to blood vessels and the

cerebral ventricles, fALFF is a proportional parameter composed of

F IGURE 3 Depiction of the
average of each functional
magnetic resonance imaging
(fMRI) parameters (amplitude of
low-frequency fluctuations
[ALFF], fractional ALFF [fALFF],
regional homogeneity [ReHo],
and degree centrality [DC]) as
computed from 16 subjects in

both sessions. All analysis took
place in the native space. Only for
presentation purposes, the values
were transferred to the standard
space. The color bar is common
for both sessions in ReHo
parameter
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ALFF in the numerator and the sum of the amplitudes in the whole

frequency spectrum in the denominator (Küblböck et al., 2014) Thus,

a decrease in reliability of their ratio is to be expected (Arndt, Cohen,

Alliger, Swayze II, & Andreasen, 1991).

The SN showed somewhat lower (still moderate) level of fALFF

stability compared to the DMN and the CEN. The SN is involved in

detecting, filtering, and integrating relevant internal (e.g., autonomic

input) and external (e.g., emotional information) salient stimuli to

guide behavior (Bressler & Menon, 2010; Chand & Dhamala, 2016).

Furthermore, it has a crucial role in the functional and dynamic

switching between the DMN and CEN (i.e., between task-based and

task-free states; Y. Liu et al., 2017; Zheng et al., 2015). Thereby, the

TABLE 1 The intraindividual intermeasure stability of the spontaneous brain activity and connectivity (short and long) within the triple
networks represented by concordance correlation coefficients. The gray highlight indicates the computed CCC value and the confidence intervals
with adjusted alpha (0.00026) are reported in Supplementary Material - Table 3 (S-Tab. 3).

Subjects

DMN CEN SN

ALFF fALFF ReHo DC ALFF fALFF ReHo DC ALFF fALFF ReHo DC

Sub01 0.72 0.19 0.77 0.40 0.75 0.02 0.75 0.25 0.74 �0.20a 0.70 0.24

Sub02 0.93 0.76 0.87 0.75 0.88 0.69 0.88 0.73 0.92 0.67 0.89 0.81

Sub03 0.84 0.44 0.64 0.47 0.69 0.44 0.56 0.62 0.87 0.35 0.76 0.78

Sub04 0.93 0.80 0.92 0.74 0.85 0.62 0.89 0.80 0.91 0.66 0.88 0.84

Sub05 0.76 0.74 0.93 0.87 0.83 0.52 0.84 0.80 0.76 0.41 0.84 0.81

Sub06 0.96 0.70 0.90 0.61 0.90 0.51 0.84 0.65 0.93 0.37 0.85 0.67

Sub07 0.90 0.61 0.84 0.76 0.85 0.56 0.82 0.77 0.90 0.41 0.79 0.64

Sub08 0.93 0.62 0.81 0.71 0.90 0.50 0.73 0.70 0.95 0.46 0.79 0.64

Sub09 0.96 0.85 0.91 0.89 0.94 0.90 0.94 0.90 0.92 0.75 0.84 0.90

Sub10 0.93 0.75 0.92 0.83 0.92 0.63 0.90 0.71 0.95 0.58 0.81 0.67

Sub11 0.95 0.75 0.91 0.76 0.95 0.76 0.93 0.77 0.92 0.69 0.86 0.78

Sub12 0.89 0.59 0.89 0.75 0.87 0.61 0.91 0.67 0.90 0.59 0.87 0.78

Sub13 0.93 0.73 0.92 0.71 0.93 0.69 0.87 0.71 0.89 0.73 0.83 0.66

Sub14 0.91 0.72 0.91 0.72 0.81 0.72 0.80 0.73 0.90 0.75 0.69 0.87

Sub15 0.91 0.60 0.74 0.32 0.92 0.73 0.83 0.63 0.95 0.83 0.91 0.72

Sub16 0.95 0.68 0.93 0.88 0.91 0.64 0.89 0.88 0.95 0.61 0.91 0.92

Note: All correlation coefficients were significant except the fALFF in CEN for the first subject (potential outlier subject).

Abbreviations: ALFF, amplitude of low-frequency fluctuation; CEN, central executive network; DC, degree centrality; DMN, default mode network; fALFF,

fractional amplitude of low-frequency fluctuation; ReHo, regional homogeneity; SN, salience network.
aThe marked subject is considered as a potential outlier; thus, a cross-check of all the raw data and all technical issues mentioned in the original publication

was performed. The cross-check did not reveal any particularities for this subject (partial signal drop out or movement). However, when an additional

analysis without this subject was performed, the results from this sample size (15 participants) did not differ noticeably from the findings from the whole

sample (16 participants), as shown in Figures S1 and S2.

F IGURE 4 Mean of the inter-
measurement stability across 16 subjects
for the fMRI parameters (amplitude of
low-frequency fluctuations (ALFF),

fractional ALFF (fALFF), regional
homogeneity (ReHo), and degree
centrality (DC)) in each core network - the
default mode network (DMN), the central
executive network (CEN), and the salience
network (SN). The error bars represent
standard deviation
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F IGURE 5 The functional connectivity average matrix for 16 subjects between the regions of the three core resting state networks. The
default mode network (DMN) includes the following regions: the medial prefrontal cortex (MPFC), the left and right lateral parietal cortex (LP(L),
LP(R), and the posterior cingulate cortex (PCC). The central executive network (CEN) includes the right and left lateral prefrontal cortex (rPFC,
lPFC) and the right and left posterior parietal cortex (PPC). The salience network (SN) includes the anterior cingulate cortex (ACC), the left and
right anterior insula (Insula), the left and right rostral prefrontal cortex (RPFC), and the left and right supramarginal gyrus (SMG). The upper
triangular matrix represents the first session, and the lower triangular matrix represents the second session

TABLE 2 Spearman's correlation coefficients and the corresponding p values, which represent the stability of the functional connectivity
between each pair of networks (DMN/SN, DMN/CEN, and SN/CEN) when compared between the two sessions for 16 subjects

Subjects

DMN/SN DMN/CEN SN/CEN

Spearman's correlation
coefficients

Corrected p
value

Spearman's correlation
coefficients

Corrected p
value

Spearman's correlation
coefficients

Corrected p
value

Sub01 .58 <.01 .71 <.01 .69 <.01

Sub02 .47 <.01 .61 <.01 .61 <.01

Sub03 .59 <.01 .53 <.01 .60 <.01

Sub04 .63 <.01 .76 <.01 .80 <.01

Sub05 .81 <.01 .79 <.01 .74 <.01

Sub06 .56 <.01 .12 <.01 .80 <.01

Sub07 .71 <.01 .69 <.01 .72 <.01

Sub08 .61 <.01 .82 <.01 .91 <.01

Sub09 .80 <.01 .60 <.01 .68 <.01

Sub10 .85 <.01 .69 <.01 .89 <.01

Sub11 .94 <.01 .94 <.01 .91 <.01

Sub12 .61 <.01 .59 <.01 .90 <.01

Sub13 .87 <.01 .41 <.01 .67 <.01

Sub14 .84 <.01 .78 <.01 .90 <.01

Sub15 .36 <.01 .34 <.01 .71 <.01

Sub16 .85 <.01 .60 <.01 .85 <.01

Abbreviations: CEN, central executive network; DMN, default mode network; SN, salience network.
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SN responds to the subjective degree of salience (Goulden

et al., 2014). It is thought that different regions of the SN could form

a sort of information processing loop for representing and responding

to homeostatically relevant external and internal stimuli

(Seeley, 2019). Indeed, their involvement in emotional functions

(Heimer & Van Hoesen, 2006), autonomic functions, and self-

awareness (Craig, 2002), as well as in the process of internal (self-)ref-

erence that predominate in states of rest and disengagement

(Critchley, 2005), is well documented. Since all these internal stimuli

can hardly be kept constant at different measurement times (despite

the uniform absence of special tasks), it is not surprising that the sta-

bility of regional spontaneous activity is somewhat lower in the SN

than in the other two networks.

We observed further for all three networks a strong stability for

the parameter ReHo. Often designated as a local FC, ReHo defined by

the temporal coherence or synchronization of the BOLD time series

within a set of a given voxel's nearest neighbors (Jiang & Zuo, 2016)

and is becoming increasingly recognized as being a highly sensitive

and reliable neuroimaging marker to characterize the human brain

(Jiang & Zuo, 2016). The high test–retest reliability of ReHo has been

already confirmed in various studies, including a systematic analysis

based on previously published papers (Zuo & Xing, 2014). However,

the basis for this investigation was data acquired using standard field

strength MRI. It has been shown that altered ReHo values may relate

to disequilibrium in spontaneous neural activity within and between

corresponding brain regions (Chen et al., 2015). Indeed, aberrant

ReHo values, indicative of disrupted local functionality, have been

linked to several neurological and psychiatric disorders, such as

Alzheimer's disease (He et al., 2007), chronic pain attention-deficit

hyperactivity disorder (de Celis Alonso et al., 2014), autism spectrum

disorders (Paakki et al., 2010), depression (Guo et al., 2011), bipolar

disorder (Shan et al., 2020) and schizophrenia (Ma et al., 2019;

Mwansisya et al., 2017); as well as in first-degree relatives of patients

with schizophrenia (Liao et al., 2012). In addition, a recent study dem-

onstrated a significant association between ReHo in the DMN and

resilience, as well as with the personality traits extroversion (in the

CEN and SN) and conscientiousness (in the SN) (Altinok et al., 2021).

Therefore, ReHo appears to be a valuable and powerful tool for

detecting aberrant RS brain activity, which can be associated with a

wide range of psychopathological abnormalities as well as with differ-

ent personality traits and varying levels of resilience in healthy

individuals.

The long-connectivity parameter (DC) also showed a strong level

of stability in all three networks, although the values of inter-

measurement stability were somewhat below the values for ALFF and

ReHo in all three networks. Divergent from our findings, previous

studies reported considerably lower test–retest reliability of the long-

range connectivity compared to the short-range connectivity parame-

ters (Braun et al., 2012; Holiga et al., 2018; Telesford et al., 2010). In a

comprehensive meta-summary from previously published papers on

the test–retest reliability of voxel-wise metrics from non-UHF studies,

Zuo and Xing (2014) investigated the long-term (�6 months) test–

retest reliabilities measured as intraclass correlation (ICC). In this

study, the ICC values for DC ranged from approximately 0.25 in the

limbic network (that includes parts of the SN) to 0.5 in the dorsal

attentional network (that includes parts of the CEN). In the DMN and

the control network, the ICC values reached a value of 0.4. Similarly,

in a more recent study performed at a 3-Tesla MRI scanner; the

highest part of the observed voxel had a mean ICC value of about

0.35. In opposite to these reports, we obtained reliability for DC

which has exceeded the value of 0.7 in all three networks examined.

Our results indicate that, especially when investigating long-distance

connectivity, the use of 7-Tesla MRI scanners could provide results

that are more reliable and thus more reproducible than results from

standard field strength MRI. Similar to our findings, one other recent

work reports a significant increase of the test–retest reliability at the

intranetwork when comparing seed-based connectivity between

7 and 3 Tesla scans (Nemani & Lowe, 2021).

In our final analysis, we investigated the stability of the inter-

network connectivity between each pair of the three core RS net-

works. Earlier investigations indicate that a stabile synchronization of

these three networks plays a crucial role in higher cognitive functions.

Thereby, the functional connectivity between the DMN and the SN

appears to be important for cognitive control (Bonnelle et al., 2012;

Menon & Uddin, 2010), and the SN has a central role in switching

between the DMN and the CEN (Bonnelle et al., 2012; Liang, Zou,

He, & Yang, 2015; Menon & Uddin, 2010; Seeley, 2019). Accordingly,

aberrations in these intrinsically well-organized interactions have been

linked to pathological states with impaired cognition (Wang

et al., 2015), and the observation of altered internetwork interactions

generally may be a valuable indicator of psychiatric symptoms.

In our study, the subregions of the DMN and the SN showed pre-

dominantly weak positive correlations. Moderate correlations

included in both sessions the PCC, showing correlations in the range

of .42–.48 with three subregions of the SN (the ACC and the left and

right RPFC). Regarding the synchronization between the DMN and

the CEN, the correlations between the subregions were also mainly

weak. We observed the strongest (moderate) correlations for PCC

F IGURE 6 Mean of the internetwork correlations stability
between the three core resting state networks depicted as the mean
correlations between DMN/SN, DMN/CEN, and SN/CEN. CEN,
central executive network; DMN, default mode network; SN, salience
network
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(with left and right LPFC in Session 1 and with the left LPFC and right

PPC in Session 2), for left LP (with left LPFC in Session 1 and with left

PPC in Session 2) as well as for the right LP (with right LPFC in Ses-

sion 1 and with right LPFC and PPC in Session 2).

In terms of the association between the SN and the CEN, the SN

subregions with the strongest positive associations with the CEN

were the RPFC, with the moderate correlations observed between

the RPFC(R) and the LPFC(R) in both sessions as well as moderate cor-

relations between the left RPFC and left and right LPFC.

The relative strength of the correlations between the specific

subregions remained widely constant when comparing the first and

the second sessions.

At the whole network level, the internetwork connectivity

showed a strong to moderate stability between the investigated net-

work pairs. This high reliability of the between-network connectivity

is consistent with the latest report by Nemani and Lowe (2021), who,

however, also showed that the high between-network reliability at

7 Tesla was not significantly improved compared to the 3 Tesla

results.

5 | CONCLUSION

More than 20 years since the first UHF-MRI scanners were approved

for use in human (Robitaille et al., 1999; Yacoub et al., 2001), results

from various areas of medicine demonstrate numerous unambiguous

advantages of using this technology (Düzel et al., 2021; Platt et al.,

2021; Vachha & Huang, 2021). Nevertheless, numerous technical

challenges still need to be solved so that the applicability remains lim-

ited, especially in the field of clinical research (Düzel et al., 2021; Ladd

et al., 2018). In this context, especially considering the growing need

for the identification of reliable biomarkers for mental and neurologi-

cal diseases, the issue of reproducibility of results remains crucial

(Griffanti et al., 2016). In a recent work, a significantly increased reli-

ability of RS connectivity at UHF strengths over conventional field

strengths has been demonstrated (Nemani & Lowe, 2021). We com-

plement this report with our confirmation of a strong stability of the

three RS fMRI metrics (ALFF, ReHo and DC), representing the sponta-

neous brain activity, local- and long-range connectivity, respectively,

in three major RS networks. In opposite to previous investigations at

standard field strengths, our results have also revealed a strong reli-

ability for DC in all three networks examined. Thereby, DC could be

considered a measure of the long-distance connectivity and even

more, it appears to be a very suitable measure to explore RS whole-

brain neural network connectivity, due to the reduction of the possi-

ble bias caused by selecting brain regions according to the priori

assumption (Guo et al., 2020; Buckner et al., 2009; Zuo et al., 2012).

Our observation suggests that for rsFMRI measurements at 7 Tesla,

long-range connectivity can also be considered a reliable parameter.

Taking into account all other advantages of UHF imaging, this technol-

ogy appears to be well suited for a versatile, reliable, and reproducible

characterization of RS networks and their interactions, as shown here

with the example of the three RS networks when investigating the

regional brain activity, short and long connectivities.
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