
Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 140

Dynamic Multi Levels Java Code Obfuscation Technique
(DMLJCOT)

Adwan Yasin adwan.yasin@aauj.edu

Faculty of Engineering &Information Technology
Computer Science Department
Arab American University
Jenin, 240 ,Palestine

Ihab Nasra ehab.nasra@aauj.edu
Faculty of Engineering &Information Technology
Computer Science Department
Arab American University
Jenin, 240 ,Palestine

Abstract

Several obfuscation tools and software are available for Java programs but larger part of these
software and tools just scramble the names of the classes or the identifiers that stored in a
bytecode by replacing the identifiers and classes names with meaningless names. Unfortunately,
these tools are week, since the java, compiler and java virtual machine (JVM) will never load and
execute scrambled classes. However, these classes must be decrypted in order to enable JVM
loaded them, which make it easy to intercept the original bytecode of programs at that point, as if
it is not been obfuscated. In this paper, we presented a dynamic obfuscation technique for java
programs. In order to deter reverse engineers from de-compilation of software, this technique
integrates three levels of obfuscation, source code, lexical transformation and the data
transformation level in which we obfuscate the data structures of the source code and byte-code
transformation level. By combining these levels, we achieved a high level of code confusion,
which makes the understanding or decompiling the java programs very complex or infeasible.
The proposed technique implemented and tested successfully by many Java de-compilers, like
JV, CAVJ, DJ, JBVD and AndroChef. The results show that all decompiles are deceived by the
proposed obfuscation technique.

Keywords: Software Obfuscation, Reverse Engineering, Byte Code, Java Reflection, De-
compiler.

1. INTRODUCTION

Java program is compiled down to platform independent and intermediate languages which is the
bytecode and Java could link entities from different libraries using symbolic references in order to
achieve platform independency [1], therefore, the names of classes , methods ,fields, , , and data
types stored in the constant pool within the byte code file. The semi-compiled form of bytecode
file makes the java applications more susceptible to analysis by reverse engineering and
decompiled by the attackers.

On the other hand, Java Virtual Machine (JVM) works as an interpreter of bytecode, which
executes and translates them into binary code. In addition, the dependencies resolved at runtime
when classes loaded by java virtual machine [18].

Source code intellectual property needs protection against piracy and tampering which is a highly
required at this time. A lot of software and applications that required hard work, money,

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 141

intelligence, and a lot of time are pirate over the last years and worldwide which cause a
significant financial loss estimated by millions of dollars every year [19].

 Code obfuscation can be used as one of basic technique needed to protect the source code from
manipulating and prevent malicious reverse engineering of software because the attacker should
understand the source code of the software before they can make any specified modifications.

Code obfuscation can be defined as transformation, and altering the source code in such a way,
which can make it too difficult to analysis by reverse engineering and difficult to understand, by
human [1]. Obfuscation should not change the functionality of the program. It can be performed
on source code, intermediate code or the machine code.

It is important to note, that we can use code obfuscation to protect the software against attackers;
it can be also used to hide a malicious content. As an example, viruses can be resorted using
obfuscation techniques that prevent them from detection by antivirus software.

Reverse engineering can be defined as the process of analyzing and extraction the design
elements from the software system. It involve modification of the system such as adding a new
functionality, modify the source code and return the source code which include the structure of
program, control flow, methods and variables [19].

Many available tools and software help and makes it easier for the attacker and reverse engineer
to decompile the software and extract the proprietary source code from Java programs in order to
combined it into their own programs and steal the intellectual property. Such stealing are difficult
to detect or tracking easily, such tools increase the challenge of code obfuscation process.

De-compilation can be defined as the process of retrieving source codes from intermediate
bytecode or machine code; therefore, there is no obfuscation that can completely counter against
extremely dedicated hackers [18].

Over the last years, number of software obfuscation tools have been proposed. Commercial and
freely available obfuscation tools are often not good as they rely on “security through obscurity”
which include renaming variables, string literals and adding nonsense instructions. These
techniques may deter some impatient adversaries, but against a dedicated adversary they offer
little to no security [18].

A lot of traditional obfuscation software use string processing techniques to carry out the
obfuscation process, or to operate on binary files. despite that string processing techniques can
sometimes work , however it often fails because the programming languages have a complex
name resolution rules and different formatting and, therefore processing such techniques usually
requires a complete language parsing, not only a string hacking.

When nested commands ,multiple statements per line, , comments placed around incomplete
blocks of codes, unusual and peculiar conventions of identifiers and function names are
encountered, as they often exist in complex and large systems it will case failure in processing
the program correctly, that produce an easily broken obfuscated code via reverse engineering.
Nevertheless, binary obfuscators work quite well, but in general it is limited to the standard simple
binary formats [3].

In addition, Semantic Designs Obfuscation tools can work quite well because it generally remove
whitespaces and nice indentation , strip comments, rename identifiers from their original name to
nonsense names which convey no information , and encode constants in an inconveniently
readable ways.

Most popular obfuscation techniques, can be classified into the following general classifications:
[19].

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 142

1. Layout transformation, which transform the program structure and make it difficult to
understand by human.

2. Data transformation, which transform the critical data and data structures into obfuscated
form.

3. Control transformation, which transform the flow of execution make it more confuse for
reverse engineering.

Most reliable way that used to build obfuscation tools simply parsing the source code according to
language syntax and lexical rules in the compiler such as the data structures, carry out the
obfuscation, and then unparsing them back to the source code [3]. We use this way in the first
level on our obfuscation approach.

This paper proposed a dynamic multi-level obfuscation approach, which depends on combination
of many techniques, as using only one technique is not sufficient to deter reverse engineers from
de-compilation the code. We combine source and lexical code obfuscation with byte code and
data obfuscation in order to make our approach robust against many forms of reverse
engineering attacks. However, we focus our efforts to work at run time environment, which will
make the byte code not easily possible to recompile again or make the code too difficult to
understand by human.

We integrate our proposed encryption algorithms based on java metaprogramming concepts,
which can be defined as the process of writing programs that manipulate other programs or itself
depend on metadata with the ability to treat programs as their data. [12] It means that a program
could developed and design to access, modify analyses, read and transform other programs, and
even modify itself at running time. [13] Working on Meta level allows us to customize the java
object model during the runtime environment. Therefore, our approach works at a level much
closer to the java virtual machine rather dealing with the higher-level language where most
compile time obfuscation tools and approaches worked.

We can determined the scope of the customization by which methods and byte code instructions
are wrapped at load time, however the real nature of the customization is adjustment at runtime
environment.

Rewriting byte code also can be applied at load time rather than run time; using an application
level class loader or prior to load time by directly rewriting class files.

In some cases, it gives the programs more flexibility and efficient handling new situations without
the need of recompilation. These techniques give us the ability to use java objects & classes later
at runtime, allowing us manipulating and modifying startup of the application and its behavior.

The rest of this paper organized as follows. We presented the related works in section 2, Section
3, gives a brief description and analysis of available code obfuscations techniques. In section 4,
we give a detailed description of our proposed approach. Section 5 contains the experiment result
of our proposed approach and finally the conclusion.

2. RELATED WORK
Many researches had been placed in order to achieve the most level of obfuscation and deter
reverse engineering form de-compilation the code. In spite of there are many free products and
commercial tools that available now a days the need for a robust obfuscation techniques is highly
required.

Chan, et al [1] proposed an approach that scramble the identifiers in the java byte code by adding
additional information to the identifiers, and stored them into the byte code file. This additional
information increase the size of the byte code file and require additional computation time, which
reduce the efficiency of program. Furthermore, they proposed several techniques that introduce a

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 143

syntax and semantic errors into the decompiled program while preserving the original behaviors
of the byte code.

Memon, et al [2] proposed to remove the name of the variables and methods, which did not allow
the completion of code statements, although this technique can fool some de-compilers, but
unfortunately, most of recent smart de-compilers can substitute these names with sequentially
names and exceed this trick easily.

In addition, the techniques cannot be applicable to all methods such as the instance method that
implements an abstract method of a superclass or the instance method that overrides an
inherited method of a superclass.

On another hand, Balachandran et al [5] proposed a software obfuscation algorithm that move
and hide some of the vital source code information such as jump instruction from the original
code into data segment. After that reconstructed it dynamically at run time. It also used the
concept of junk bytes addition in order to increase the complexity of disassembly process.
However, the size of the program will be duplicated and increase about 2.2 of the original
program due to addition of the reconstructed instructions in the program.

The signals based approach proposed by Debray, et al [7] obfuscate the control flow with the help
of signals. The idea is to replace the control flow instructions, such as jump, return and call
instruction with a trap instruction. When the trap instruction is raised a signal at run time it will
trigger the program signal handler, which will transfer the system control to the original target
address again.
 Madou, et al [8] proposed an obfuscation technique that based on dynamic code mutation. The
main of their work is to mutate the program by running edit scripts. Therefore, some parts of the
procedures in the orginal program removed and placed a stub at the entry point of the procedure.
During the run time of the program, the parts will be restored. In addition, the routine will go into
the stub to execute the editing engine and then the stub will be removed.

P. Sivadasan, et al [19] proposed a framework for hiding integer in java code using Y-factors;
they improved the constant hiding techniques proposed by Ertaul et al [21] where the Y_factors
could be used to transform the non-negative numbers into simple expression which followed the
form of “2*d + r”. They used an array of prime numbers where the sum of the numbers in any pair
should be a prime number and the pairs then stored in that array in an increasing order of their
sum value.
H.Chen et al [23] propose a scheme to obfuscate the whole control flow of a program and insert
bogus code. They use the tags as opaque predicates with modest performance degradation in
order to prevent malicious code injection, defeat software piracy and hinder reverse engineering
analysis. Their work focus on using two features the architectural for automatic propagation of
tags and violation handling of tag misuses. They implement a prototype based on Itanium
processors that exploit exception propagation and user-level exception handling.

S.Schrittwieser et al [24] proposed a novel that used the concept of software divarication and
apply it to program control flow in order to prevent dynamic attack, they split the code into small
parts before diversification where the control flow graph of the software reconstructed before
executing the code. They utilize the concept of a branching function by inserting indirect jumps
that cannot detect their real jump target until runtime; therefore, the attacker needs to collect all
information in order to obtain a complete view of the program.

P. Sivadasan, et al [22] proposed a tool for restructuring arrays of java code, they first spit the
array into two arrays then merge and folding the arrays, finally the flatting the array. Their tool
generate a class that encapsulate the array object where the instantiated objects of those classes
used for source-code writing.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 144

3. CODE OBFUSCATION TECHNIQUES ANALYSIS AND REVIEW
Code obfuscation techniques can be classified into the following: Source code obfuscation,
bytecode obfuscation, name obfuscation, String obfuscation, control flow obfuscation, Data
obfuscation, and Debug info obfuscation.

Source code obfuscation involve renaming the identifiers and variables with meaningless names,
remove comments, changing the formatting of the source code and removing the debugging
information. [4] This process will leads to reduce size of software and make running of that
software more fast especially in smart phones devices.

Bytecode obfuscation encrypt the identifiers and class names in bytecode files, however the JVM
cannot not load and execute encrypted classes. Therefor the encrypted classes should be
decrypted in order to enable the JVM load it.

Name obfuscation is the process of replacing classes and methods names with meaningless
names or sequences of characters, which will reduce the understanding of the code. [4].

One of the nice advantage of name obfuscation is the considerable class file size reduction,
which will reduce the size of the application. [5] However, name obfuscation has its shortage and
limitations: (1) names of the standard java API classes, which are a part of the JRE, cannot be
obfuscated. (2) You may cannot rename the entities that accessed via reflection at run time. This
happened due to reason that the particular method or class might be dynamically accessed,
especially if it belongs to a third party or framework or to a part of another application. (3)
Serializable classes names may cannot be obfuscated [5]. Many obfuscators tools might
automatically excluded the classes that implement the Serializable interface.

String encryption involved replacing string literals values with calling to a method that decrypts its
parameter in order to makes the attacker life more difficult. Nevertheless, this method face a
major problem that is the strings should be decrypted at run time, so the particular code must be
included in the application. Moreover, the attacker can easily decompiled that code. [5].

Control flow obfuscation is the process of modifying the program by replacing the instructions
produced by a Java compiler with jump instructions to change the control flow of the program that
may not be decompiled into valid well-structured Java source or lead to unrelated code.

Therefore, the de-compiler may fail to return the original code. However, not all de-compilers are
that dumb. In addition, these techniques have their drawbacks and disadvantages, which are (1),
code flow obfuscation reduce the performance of program. (2) Field engineering may be difficult.
(3) Standard java API classes may cannot be obfuscated.

Debug info obfuscation work by hiding debug information generated by java compiler, this
information will be need to get meaningful stack traces such as line number information and
source file names to the resulting class files. In case of obfuscation all these information may
remove, or change file names to meaningless strings.[4] However a reverse mapping utility need
in order to retrieve the original stack trace again.

Due to our comprehensive study, we find that most of the available tools and software suffer from
the same problem, which is the disclosure of their decryption process after a hard work of
encryption. All of them have certain shortage and drawbacks, and do not solve the fundamental
problem of undesirable exposure of obfuscation and encryption algorithms including the ideas,
data formats, licensing and security mechanisms that enable reverse engineers from hacking
proprietary applications Therefore, the need for a new robust approach is highly recommended.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 145

4. PROPOSED DMLJCOT

The Proposed DMLJCOT resolves the main problems that other approaches could not handle by
applying the following powerful features:

1. Obfuscating identifiers names and encrypting variables value should not relying on the
application that delivered in byte code form.

2. Integrating of multi-levels of obfuscation because depending on one level will not be sufficient
to prevent reverse engineering.

3. Compiled the obfuscated application down in order to optimize the native source code.

4. Reduce the size of programs by replacing the names of variables and method with short
names, which will reduce the program compilation time.

5. Hide the decryption algorithms and the mechanisms used in obfuscated program.

6. We do not need to decrypt the obfuscated source code at the first level of obfuscation,
because we encrypt the source code without violating the java language specifications.

7. We use advanced programming techniques such as Compile time Reflection and
Metaprogramming. Which give us the ability to inspect classes, interferes fields and methods
at runtime, which enable us to develop and design encryption/decryption algorithms that can
access, modify other programs and the program itself at run time.

The proposed DMLJCOT integrates the following levels of obfuscation:

 Source code obfuscation level: At this level, proposed technique, obfuscate the source
code of the program by replaced identifiers such as variables, functions and classes
names with nonsense names that convey no information.

 Data obfuscation level: at this level, the proposed technique encrypts the values of
constants, local and global program variables in order to make the de-compilation process
more complex.

 Bytecode obfuscation level: at this level, the proposed encryption algorithm will substitute
the identifiers names that stored in byte code with Illegal obfuscated identifiers, which will
generate a syntax and compilation errors by de-compilers.

4.1 First Level: Source Code Obfuscation

At this level, the proposed technique obfuscate the source code of the program by removing
whitespaces and indentation , strip comments, encode the constants in inconveniently readable
ways, and replaced identifiers such as variables, functions and classes names with nonsense
names that convey no information. It aims to prevent the human understanding of the code, which
complicates the statistics analysis of the source code. In addition, this mechanism will reduce the
size of program as a result of replacing long names of identifiers with short nonsense names. The
generated nonsense names should not violate the java language naming specifications or
causing any compilation or syntax errors. There are several methods in java that could not be
obfuscated like instance methods that implements an abstract method of a superclass, instance
methods that overrides an inherited method of superclass and instance methods that used as a
callback function and they should be excluded from obfuscation by including them in an exception
list. However, the others methods could be obfuscated without any problems.

Proposed source code obfuscation algorithm has the flowing general steps:

1. Traverse the java package and class structure from top to down.

2. If the method is in exception list, keep it without obfuscation; otherwise apply the
“stringShuffle” algorithm that will replace the original identifiers with randomly
generated nonsense names. The generated nonsense names should contain a letter,
number, and specific allowed special characters which are dollar sign & underscore
characters ($, _).

3. Apply the cleaning and optimizing process that will be removing nice indentation and
whitespace, strip comments, remove annotation, and hide debug information.

4. Save the updated file and continue to another file on the application.

Source code obfuscation algorithm Flow chart is illustrated in in figure 1.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 146

FIGURE 1: Source code obfuscation algorithm.

Proposed generator algorithm generate a random nonsense names by applying a combination of
letters, numbers, and specific allowed special characters which are the dollar sign and
underscore ($, _) characters. The generated nonsense names should follow the java naming
specifications and acceptable as an identifiers names.

The way of generating the nonsense involved the following steps:

(1) Generate random characters in the ranges of (a-z, A-Z).

(2) Generate random numbers from (0 -10).

(3) Combine the generated value randomly with allowable special characters ($, _) symbols.

(4) Shuffled the generated nonsense by applying the proposed string shuffle algorithm.

(5) Check if the shuffled nonsense follow the java naming specifications, if so accept it as a
nonsense; otherwise reject it and generate another one.

Random seed generator algorithm shown in algorithm 1.

Algorithm 1: Random Seed Generator Algorithm

PUBLIC STATIC INT RANDNUMINT() {

RANDOM RANDOM = NEW RANDOM();

INT RANDOMNUM = GENERATE_RANDOM_INTEGER (SEAD) ; // GENERATE RANDOM INTEGER FROM (0-9)

 RETURN RANDOMNUM; }

 PUBLIC STATIC CHAR RANDOMCHARACTERGEN() {

CHAR BASEVALUE GENERATE_RANDOM_CHARACTERS() ;

 RETURN (CHAR) RANDOM; }

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 147

 PUBLIC STATIC STRING RANDOMSEEDGENERATOR()

{ STRING SEED=""; STRING SPECIAL_CHARACTOR="$_";

 CHAR CHARACTER; INT RANDOM;

 FOR (INT J = 1; J <= 3; J++)

 { CHARACTER = RANDOMCHARACTERGEN();

 RANDOM = RANDNUMINT (); SEED = SEED + CHARACTER + RANDOM; }

SEED = SEED + SPECIAL_CHARACTOR; // GENERATE RANDOM SEAD

RETURN SEED; }

In order to complicate the way of generating the nonsense names and make it more confused we
randomly permutated and shuffled the generated nonsense names. However, we should ensure
that the generated shuffled nonsense should not violate the java language specification;
consequently, we replaced all identifiers names with the shuffled nonsense names. The way of
generating and shuffle, the nonsense names shown in algorithm 2 and figure 2 bellow.

Algorithm 2: String Shuffle Algorithm

// SEND SEED TO STRING SHUFFLE METHOD AS A PARAMETERS USING STRING BUILDER CLASS.

STRINGBUILDER SB = NEW STRINGBUILDER(SEAD);

STRINGSHUFFLE(SB); // STRINGSHUFFLE METHOD

PUBLIC STATIC VOID STRINGSHUFFLE(STRINGBUILDER SHUFFLESTR) {

 RANDOM NEWRAND = NEW RANDOM();

 FOR (INT K = SHUFFLESTR.LENGTH() - 1; K > 1; K--) {

 INT SWAPWITH = NEWRAND.NEXTINT(K);

 CHAR TMPCHAR = SHUFFLESTR.CHARAT(SWAPWITH);

 SHUFFLESTR.SETCHARAT(SWAPWITH, SHUFFLESTR.CHARAT(K));

 SHUFFLESTR.SETCHARAT(K, TMPCHAR); } }

FIGURE 2: Random generation & Shuffle nonsense names.

As a next step, we optimized the source code by removing the whitespaces; comments remove
annotation, hide debug information.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 148

The results after applying the first level of obfuscation shown in figure 3 and 4 below. As can see
that all identifiers are transformed to nonsense names, which will make the code less clear and
difficult to comprehend by human, as an example variable “employeeName” transformed to
“_5X1g$8J” nonsense name.

4.2. Second level: Data Obfuscation

At this level, the proposed technique encrypts the values of constants, local and global program
variables in order to make the de-compilation process more complex.

In order to complicate the process of data manipulation and understanding we apply several
encryption algorithms and each of them dedicated for one variable data type. The proposed
technique allow the selection of encryption algorithm for string, characters, integers and decimal
number such as float and double in a random manner. The same encryption key used in all
encryption algorithms.

The static data will be encrypted during the program initialization and the dynamic data are
encrypted and decrypted by using dedicated methods that manipulate variables values. The
encryption algorithm shown in algorithm 3 bellow.

FIGURE 3: Employee class original source code before obfuscation.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 149

FIGURE 4: Employee class source code after first level of obfuscation.

Algorithm 3: Data encryption algorithm

PUBLIC CLASS DATAENCRYPTION {
 STRING ENCRPTIONKEY= "";
 //GENERATE RANDOM ENCRYPTION KEY USING RANDOM KEY GENERATOR
 PUBLIC DATAENCRYPTION() {
 ENCRPTIONKEY = KEY_RANDOM_GENERATOR();
 //GENERATE THE PERMUTATION VECTOR
 FOR(KI IN ENCRPTIONKEY)
 PERMUTATIONVECTOR[I] = KI MOD 8 // SEQUECE FORM 0-7
 END FOR LOOP
 //TRAVERSE_PROGRAM_VAIABLES
 BEGININDEX = 0;
 FOR(VARIBLE I IN PRGRMA)
 { //DETERMINED VARIABLE DATA TYPE
 VARDATATYPES =DETERMINED_VARAIBLES_DATA_TYPES(VARIBLE I);
 NOOFBITS = VARIBLE.LENGTH() ;
 ENDINDEX = NOOFBITS;
 IF(VARDATATYPES EQUAL "INTEGER")
 CALL INTEGER_ENCRYPTIONALGORITHM(VARIBLE I);
 ELSE IF(VARDATATYPES EQUAL "FLOAT" OR VARDATATYPES EQUAL "DOUBLE")
 CALL DECIMAL_ENCRYPTIONALGORITHM(VARIBLE I);
 ELSE IF (VARDATATYPES EQUAL "STRING")
 CALL STRIN_ENCRYPTIONALGORITHM(VARIBLE I);
 ELSE IF (VARDATATYPES EQUAL "CHAR")
 CALL CHAR_ENCRYPTIONALGORITHM(VARIBLE I);
 } } }

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 150

4.2.1. Description of used encryption Algorithms

In order to avoid producing unprintable or not allowed symbols in the output we construct a Code
table that contains all possible characters and their codes that may be used in the programming
languages and it will be used by all encryption algorithms see table 1 below.

a b c d … z A B … Z 0 1 … 9 ! @ # % ? Space …

0 1 2 3 … 25 26 27 … 51 52 53 … 61 62 63 64 65 66 67 …

TABLE 1: Transformation Table.

The used encryption algorithms are based on the Permutation and Substitution encryption
principles in order to enhance performance, confusion and diffusion characteristics of the
Ciphertext.

4.2.2. Permutation Algorithm (PA)

The Permutation algorithm is a block cipher that handle each plaintext block independently and
the length of each block equal the length of the keyword in terms of positions number. The
permutation process starts by initialization the vector of permutation (VP) which is key dependent
and computed by using the following formula:

Vpi = Ki*(i+1) Mod N i= 0, 1….N-1; (1)

Where, N - the length of block cipher;

 Ki = code of ith Key Character;

For implementation issues related to data presentation we suggest that N=8 and consequently
the key size =8; the resulting VP will be as shown in table 2. The first element of VP dictates that
the first element of plaintext should be permuted with fourth element (04). From table 2, it is
clear that the proposed algorithm allows the duplication of swapped position in order to enhance
its confusion characteristics. The proposed algorithm uses sliding window technique to deal with
the Blocks that their size less than 8 by borrowing from the previous block the needed number of
character to fill the last block.

Position 0 1 2 3 4 5 6 7

Transposition 4 5 2 1 0 7 3 4

TABLE 2: Permutation Vector.

4.2.3. Substitution Algorithm (SA)

SA algorithm encrypts the integer, by XORing the last element of the key with the integer, the
result value of XOR operation XORed with the previous element of the key. This process
repeated until we reach the first element of the key. The encryption function takes two parameters
A and K, where A is the integer value and K is the key, which is treated as an array of characters.
This process is described in algorithm 4.

Algorithm 4: Integer Encryption Algorithm

PUBLIC CLASS DATAENCRYPTION {
 PUBLIC INT ENC(INT A,STRING K){
 // INITIAL VALUE OF ENCRYPTED INTEGER IS A
 INT ENCRYPTED_INTEGER = A;
 FOR(INT I =LENGTH[K] ; I<=0 ; I--) {
 //XORING VALUE OF INTGER WITH THE KEY
 ENCRYPTED_INTEGER = ENCRYPTED_INTEGER ⊕ K[I];
 } //END LOOP
 RETURN ENCRYPTED_INTEGER ;
 } }

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 151

We encrypt the float and double using the same technique described above but with small
modification that we ignore the decimal point and take the entire number, as an integer. I.e. a
float number such as 10.5 treated as 105 ignoring the decimal point.

In order to retrieve the original value of number at run time we send the count the digits before
the decimal point as another parameter to the decryption algorithm. On other hand, the string and
characters encrypted using PA described previously.

The next step that follows the encryption process of data is the replacement of data value by
calling the decryption algorithm in order to obfuscate the real value which will complicate the
disassembly of the code , and this lead to preventing tracing memory tools from detecting the
variable value.

In addition, we obfuscate the name of our decryption algorithm to be “Ob_f57_oR” in order to hide
its real name from attackers.

Proposed technique call fake methods instead of original ones in case if the variable assignment
is a calling to function. As an example if we have a variable called x which assigned to calling to
function named mem1 suchlike.

 “x = mem1 ()” it will be replaced with “x= fakeMethode1 ()”, fake method names will start by “Fa_”
sequence of characters and the rest characters will be generated randomly. During run time, the
decryption algorithm will reverse the process and return the original method names.

The structure of Data encryption process and the results of second level obfuscation shown in
figure 5 and figure 6.

FIGURE 5: Structure of Data encryption process.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 152

FIGURE 6: Employee class source code after the second level of obfuscation.

4.3. Third level: Bytecode Obfuscation (BO)

At this level, proposed encryption algorithm will substitute the identifiers in byte code with Illegal
obfuscated identifiers in order to generate a syntax and compilation errors when it decompiled

and recompiled again by attackers.

Java language specification states that an identifier cannot be begin with number or contain some
special character such as (;), (:), (/), (%), (!), (#) or space, etc. It should be start with a letter
followed by a mixture of letters and digits.

In addition, it cannot be similar to a reserved keyword such as null or Boolean literal.

Lexical analyzer can exploit these rules in order to parsing and analyzing a program. However, in
the byte code these rules need not be complied because JVM loads the bytecode without
verifying whether the names in the constant pool obey with the identifiers definition or follow the
Java language naming specification. Consequently the constant pool of the bytecode can
contains illegal characters, keywords, null or Boolean literals and this is will be exploited by our
proposed technique by changing the identifiers to be illegal in order to cause in compilation
error When the obfuscated bytecode decompiled and recompiled again.

Proposed BO algorithm exploit these rules in order to obfuscate the identifiers names stored in
byte code with illegal names that does not follow the lexical of Java language specification.
Therefore, the attacker will spend a lot of time and effort debugging it, which is useless. In
addition, the de-compiler tools will face a big problem treating such illegal symbols and names,
and this will make it too difficult or impossible for any, decompiling tools to obtain the original
names or handle these illegal characters and by this way we can prevent the dynamic reverse
engineering. There are some characters and symbols that cannot be used as an identifier as

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 153

they have a specific meanings for JVM such as ‘‘<init>’’ which used by JVM to call the
constructors, ‘‘<clinit>’’ which used by JVM for static members initialization. In addition to the
characters, ‘‘/’’, ‘‘:’’ and ‘‘n’’, as the JVM used these characters as a path separator in the file
systems host. Furthermore the character ‘‘$’’ is used by JVM as a separator between type and its
nested types [1]. Proposed BO algorithm uses a combination of illegal special characters, which
are chosen randomly, by using the following steps:

1. Generate random obfuscated name

2. Select randomly number or illegal special characters from the list |! | # | % | @ | * | _ | . | ; |.

3. Append the selected characters generated from step 2, at the beginning of the
obfuscated names.

4. Replace all identifiers names in constant pool with the generated obfuscated names.

Proposed BO algorithm used semi colon (;) which means end of statement therefore decompiles
will treat this name as two variables. As an example if we have the flowing statement (x; y).
Decompiles divided into two variables x and y instead of treated it as one variable.

We used the dot character in our encryption process which treated as separators of tokens in a
source program, which will make the task of de-compiler more difficult because the Java compiler
will consider ‘‘.’’ as a separator between a reference and its members object or a type. As we will
see in the experimental results that all de-complies fooled by this illegal symbol.

5. EXPERIMENTAL RESULTS
Our experiment proves that any attacker cannot be aware of what happened at run time even
when he is trying to disassembly the code or tracing the memory. In order to evaluate our
approach against dissemblers and memory tracing tools we select a portion of code from
employee class shown in figure 3 and 4. The code we selected shown in figure7.

PUBLIC STATIC VOID MAIN(STRING[] ARGS) {
PRIVATE STRING emplyeeName;
emplyeeName = "EMPLOYEE NAME";

SYSTEM.OUT.PRINTLN(emplyeeName); // PRINT THE VALUE ON CONSOLE
}

FIGURE 7: Portion of code from employee class (without obfuscation)

We use Jasmin Java Assembler software that convert Java classes into binary “Java. Class” files
that are convenient for loading into a Java Virtual Machine by taking the ASCII descriptions of
Java classes. In order to tracing the memory, we used VisualVM, which is a visual tool that give
us the capability of performance analysis and monitoring for the Java SE platform. VisualVM
integrated several command line JDK tools and lightweight profiling capabilities so it can be used
for both production and development. The disassembly results of the code in figure 7, shown in
figure 8 below:

FIGURE 8: Disassembly results of code in figure 7.

As obvious from figure 8 above that the variable value detected easily after disassembly the
code, also it can be easily traced if we use any memory-tracing tool as obvious in figure 9 bellow

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 154

FIGURE 9: Tracing memory of the code in figure 7.

The equivalent obfuscated code after applying the first and second levels of obfuscation using our
proposed algorithms shown in figure 10 below:

PUBLIC STATIC VOID MAIN(STRING[] ARGS) {
PRIVATE STRING Y_15L5$Q0; //AFTER OBFUSCATE THE IDENTIFIER NAME
Y_15L5$Q0 = OB_F57_OR("WXNBAGAWXGXXX"); // WHERE“OB_F57_OR”IS OUR OBFUSCATOR

METHOD ,"WXNBAGAWXGXXX" IS THE OBFUSCATED VALUE;
SYSTEM.OUT.PRINTLN(Y_15L5$Q0); // PRINT THE VALUE ON CONSOLE
}

FIGURE 10: Equivalent obfuscated code of the code in figure 7.

FIGURE 11: Disassembly results of the code in figure 10.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 155

As a result, of implementing our approach we noticed that the disassembly of code became very
difficult. In addition to that, the value of obfuscated variable can’t be detected by memory tracing
tools as obvious in figure 12 bellow, because we replaced its value by calling a method that
obfuscate the value by using encryption algorithm. The tracing does not contain the original
string and the encrypted one does not appear. We apply same techniques described previously in
order to obfuscate the other identifiers of an application.

FIGURE 12: Tracing memory of the code in figure 10.

The proposed technique has been applied on Employee class and then test against several
available de-compilers. The results show that all decompiles are fooled by the proposed
technique as the decompiled program contains a superfine bugs which it is difficult to discover.
The results in Table 3 show that Java Decompiler Project (JD) are smarter than other de-
compliers when handling keywords identifier as it can retrieve the ordinary keyword identifier
automatically. Also it can replace some illegal symbols with underscore character, while the other
decompiles use in the decompiled program the identifiers names similar to the keyword without
any changes. The results of testing obfuscated code produced by our technique by using many
Java De-compilers such as Cavaj, DJ, JBVD, and AndroChef show that they all fooled by the
illegal symbols and failed to decompile the obfuscated byte code.

 Decompiled results
After using illegal

symbols

Decompiled results
After using semi colon “;”

Decompiled results
After using dot “.”

Original
Identifier

STRING

EMPLOYEENAME="EMPLOYEE

NAME"

STRING

EMPLOYEENAME="EMPLOYEE

NAME"

STRING

EMPLOYEENAME="EMPLOYEE

NAME"

Obfuscated
Identifiers

STRING #_1#L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

STRING #_1;L!Q%0 =

OB_F57_OR("WXNBAGAWXGXX

X")

STRING #_1.L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

JD STRING Y_1_L_Q_0 =

OB_F57_OR("WXNBAGAWX

GXXX")

STRING Y_1;
L_Q_0=GETEMPLOYEEDEPARTME

NT($2R_8U7D)

CAN’T FIND SYMBOL : L_Q_0

STRING Y_1.L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

EXCEPTION ERROR

Cavaj STRING Y_1#L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
<IDENTIFIER> EXPECTED
CAN’T FIND SYMBOL :

CLASS $Q0

STRING Y_1;L!Q%0 =

OB_F57_OR("WXNBAGAWXGXX

X")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
ILLEGAL CHARACTER:’%’
CAN’T FIND SYMBOL L
<IDENTIFIER> EXPECTED

STRING Y_1.L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

EXCEPTION ERROR

DJ STRING Y_1#L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
<IDENTIFIER> EXPECTED
CAN’T FIND SYMBOL :

CLASS $Q0

STRING Y_1;L!Q%0 =

OB_F57_OR("WXNBAGAWXGXX

X")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
ILLEGAL CHARACTER:’%’
CAN’T FIND SYMBOL L
<IDENTIFIER> EXPECTED

STRING Y_1.L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

EXCEPTION ERROR

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 156

JBVD STRING Y_1#L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
<IDENTIFIER> EXPECTED
CAN’T FIND SYMBOL :

CLASS $Q0

STRING Y_1;L!Q%0 =

OB_F57_OR("WXNBAGAWXGXX

X")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
ILLEGAL CHARACTER:’%’
CAN’T FIND SYMBOL L
<IDENTIFIER> EXPECTED

STRING Y_1.L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

EXCEPTION ERROR

AndroChef STRING Y_1#L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
<IDENTIFIER> EXPECTED
CAN’T FIND SYMBOL :

CLASS $Q0

STRING Y_1;L!Q%0 =

OB_F57_OR("WXNBAGAWXGXX

X")

ILLEGAL CHARACTER :’#’
<IDENTIFIER> EXPECTED
ILLEGAL CHARACTER:’!’
ILLEGAL CHARACTER:’%’
CAN’T FIND SYMBOL L
<IDENTIFIER> EXPECTED

STRING Y_1.L!Q%0 =

OB_F57_OR("WXNBAGAWX

GXXX")

EXCEPTION ERROR

TABLE 3: De-compilation testing results.

 It is clear from the above table that JD are smarter than others when it handled illegal symbols
such as “!,#”, it replaced them by underscore character “_”, where the others return the same
obfuscated statement as it is without any modification which cause compilation error and results
an exceptions.

On the other hand, all de-compliers fooled when they treated with semi colon and dot symbols,
although the JD tried to handle the semi colon by dividing the variable into two different
statements and replace the illegal characters with underscore characters but it causes an
exception and failed to decompile because the Java compiler cannot find declaration of variable “

L_Q_0”.

The proposed approach confused all de-compliers and prevent them from return the original
code, and therefore the professional attacker has to spend a lot of time trying to debug the code.

6. COMPARATIVE EVALUATION AND IMPROVEMENTS
Most obfuscators provide only one protection level, some of them worked with high program level;
they worked only with layout obfuscation. Therefore, they could not prevent the de-compilers from
decompiling the source codes obfuscated by them. On the other hand, other obfuscators only
scramble identifier names, which we consider a low-level protection as it does not work well with
recent smart de-compilers. Although such obfuscators could successfully obfuscate the simple
source codes; however, they could not properly obfuscate the complex programs or logical
Programs.

Layout obfuscation simply parsing the data structures of source code according to the language
lexical rules and syntax, carry out the obfuscation, and then un-parsing them back to the original
source code while in our approach we improved such transformation with a way that break the
relationship between code statements through replacing the meaningful identifiers with nonsense
names that convey no information where the generated nonsense names should not violate the
java language naming specifications or causing any compilation or syntax errors. Therefore, we
did not need to un-parsing the code back to the original source code such as the tools that depend
on layout transformation.

Array restructuring working only in transforming integer arrays where no string encryption added to
the program. Other data obfuscators transform only one datatype such as integer or string where
other types will not be obfuscated, which leads to low level of obscurity while in our approach we

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 157

apply several encryption algorithms each of them dedicated for one datatype, we obfuscate string,
characters, integers and decimal number such as float and double in a random manner. By this
way, we complicated the process of data manipulation and understanding; we take in our concern
the case if the variable assignment is a calling to function where in this case, the proposed
technique call fake methods instead of original ones that will be return back at run time. Such
improvement convey most data types, which give our approach more robustness.

Control flow obfuscation simply restructuring branching statements and loops in program to
change the control flow of the program. However, altering the control flow may increase the
runtime to such a drastic level that could affect the efficiency of obfuscation. The criteria used in
evaluating the quality of obfuscation depend on how much obscurity added to the program.
However, the combination of control flow obfuscation with data obfuscations techniques might be a
good way for an obfuscator to defy against de-compilers.

From discussed above, we see that the best way to improve the level of obfuscation is make a
combination of different obfuscation techniques; therefore, in our approach we make a
combination of the source code obfuscation with byte code and data obfuscation, which make the
proposed approach robust against many forms of reverse engineering attacks. In addition, we
improve the way of producing illegal names stored in bytecode in order to complicate the life of
attacker.

When we evaluated our work with other works, we see that it can defeat de-compilers in more
efficient manner than others because it work on different obscure levels and obfuscate many
datatypes while others approaches worked only on one level or one datatype. The result of
evaluations and comparisons related approaches with the proposed approaches appear in table 4
bellow.

Approach Obscure
levels
worked on

Methodology Drawbacks &
Limitations

Chan, et al. approach [1] Bytecode
level.

Scramble the identifiers
in the java bytecode.

- Increase size of bytecode.

- require additional
computation time.

- reduce the efficiency of
program.

Memon, et al. approach [2] Variables
and methods
level.

Hide the name of the
variables and methods

- Most of recent smart de-
compilers can substitute
these names with
sequentially names and
exceed this trick easily.

- Cannot be applicable to all
methods such as the
instance method that
implements an abstract
method.

Balachandran et al approach [5] Layout level. Move and hide some of
the vital source code
information such as
jump instruction from
the original code into
data segment.

Size of the program will be
duplicated and increase
about 2.2 of the original one.

P.Sivadasan, et al approach [19] Data level. Hiding integer in java
code using Y-factor.

Obfuscate only non-negative
integer without obfuscating
other types such as string.

S.Schrittwieser
et al approach
[24]

Control Flow
level.

Split the code into small
parts before
diversification where the
control flow graph of the

- Require additional
computation time due to vast
amount of inserted jumps,
which will reduce the

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 158

software reconstructed
before executing the
code.

efficiency of program.

- Not cover inter gadget
diversification.

P.Sivadasan,
et al approach
[22]

Array
Restructuring
level.

Restructuring arrays of
java code.

Working only on
transformation the integer
arrays where no other
datatypes encryptions added
to the program.

Our Approach (DMLJCOT) - Variables
and methods
level.

- Layout
level.

- Data Level.

- Bytecode
level.

- Obfuscate the source
code of the program by
replaced identifiers such
as variables, functions
and classes names with
nonsense names that
convey no information.

- Encrypts the values of
constants, local and
global program
variables

- Substitute the
identifiers names that
stored in byte code with
Illegal obfuscated
identifiers.

Not cover control flow level.

TABLE 4: Comparative evaluation of related approaches and the proposed approach.

7. CONCLUSION
The power of our approach come from the combination of many obfuscation techniques used to
build it; we combine the source code obfuscation with byte code and data obfuscation, which
make our approach robust against many forms of reverse engineering attacks. In addition, we
used advanced programming techniques such as Compile time Reflection and Metaprogramming
for Java. Which give us the ability to inspect classes, interfaces, fields and methods at runtime.
The proposed approach in this paper satisfy all levels of obfuscation including the source code,
byte code and data obfuscation and preserving the semantics of the byte code which is an
important criterion of the obfuscation process. The most cracking tools cannot easily undo the
obfuscation effects of our approach, as the attacker will consume a lot of time removing the bugs
of the decompiled buggy program. Our experimental results prove that the proposed technique
provides stronger bytecode protection than other existing techniques. The proposed obfuscation
technique can be implemented in other languages.

8. FUTURE WORK
In order to improve the proposed approach it is possible to add the flow control level as a forth
level to make this approach more robustness against many forms of reverse engineering attacks.
In addition, future researches may be conducted on binary level of obfuscation; which required
working on hardware level.

9. REFERENCES
[1] J.T. Chan and W. Yang, “Advanced obfuscation techniques for java bytecode,” Journal of

 systems and software, Vol. 71, 2004.

[2] J.M. Memon, S. Arfeen, A. Mughal, F. Memon, “Preventing Reverse Engineering Threat in
 Java Using Byte Code Obfuscation Techniques”. 2nd International Conference on Emerging
 Technologies, IEE, Peshawar, Pakistan 13-14 November 2006.

[3] M. Popa, “Techniques of Program Code Obfuscation for Secure Software. Journal of Mobile,
 Embedded and Distributed Systems, vol. III, no. 4, 2011, ISSN 2067 – 4074.

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 159

[4] F. BUZATU, “Methods for Obfuscating Java Programs. Journal of Mobile, Embedded and
 Distributed Systems, vol. IV, no. 1, 2012,ISSN 2067 – 4074

[5] V. Balachandran and S. Emmanuel, “Software Code Obfuscation by Hiding Control Flow”.
 IEEE, 978-1-4577-1019-3/11/$26.00, 2011.

[6] X. Yao, J. Pang, Y. Zhang, Y. Yu, J. Lu, “A Method and implementation of control flow
 obfuscation using SEH”. Fourth International Conference on Multimedia Information
 Networking and Security, IEEE, 978-0-7695-4852-4/12 $26.00, 2012

[7] I. Popov, S. Debray, and G. Andrews, “Binary obfuscation using signals,” in Proc. of 16th
 USENIX Security Symposium on USENIX Security Symposium table of contents, USENIX
 Association Berkely, CA, USA, 2007.

[8] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, K. De Bosschere, “Software
 Protection Through Dynamic Code Mutation, “LECTURE NOTES IN COMPUTER SCIENCE
 3786, 2006, 194.

[9] W. Dingab, Z. Gua, F. Gaoa, “Reconstruction of Data Type in Obfuscated Binary Programs”.
 ICACT, ISBN 978-89-968650-3-2, 2014.

[10] S. Andrivet, “C++11 metaprogramming applied to software obfuscation”. Black Hat Europe
 conference, Amsterdam ,2014

[11] W. Miao, J. Broberg and J. Siek, “Compile-time Reflection and Metaprogramming for Java”.
 ACM, 978-1-4503-2619-3/14/01. . . $15.00,2014

[12] É. Tanter a, R. Toledo a, G. Pothier a, J. Noyéb, “Flexible metaprogramming and AOP in
 Java”. Science of Computer Programming 72 (2008) 22–30.

[13] M. Garci, “Runtime metaprogramming via java.lang.invoke.MethodHandle”. LAMP, EPFL,
 2012, http://lamp.epfl.ch/~magarcia.

[14] J. MacBride, C. Mascioli, S. Marks, Y. Tang, L.M. Head, and R., P. Ramachandran. “A
 COMPARATIVE STUDY OF JAVA OBFUSCATORS”. Proceeding of the Nith IASTED
 International Conference SOFTWARE ENGENEERING AND APPLICATION, November 14-
 16, 2005, Phoenix, AZ, USA.

[15] N. Jeenjun S. Khuntaweetep and S. Somkuarnpanit. “Byte code Interpreter for 8051
 Microcontroller”. Proceeding of the International Multi Conference of Engineers and
 Computer Scientists, 2010 Vol II, IMECS 2010, March 17-19, 2010, Hong King.

[16] E. E. Ogheneovo and C.K. Oputeh, “Source Code Obfuscation: A Technique for
 Checkmating Software Reverse Engineering”. International Journal of Engineering Science
 Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 3
 Issue 5ǁ May 2014 ǁ PP.01-10.

[17] S. Treadwell, M. Zhou, “A Heuristic Approach for Detection of Obfuscated Malware”. 978-1-
 4244-4173-0/09/$25.00 ©2009 IEEE.

[18] F. BUZATU, “Methods for Obfuscating Java Programs”. Journal of Mobile, Embedded and
 Distributed Systems, vol. IV, no. 1, 2012, ISSN 2067 – 4074

[19] P. Sivadasan, P .S. Lal, N. Sivadasan, “JConstHide: A Framework for Java Source Code
 Constant Hiding”. Journal of Information Assurance and Security 4 (2009) 21-29.

[20] I. Welch and R. J. Stroud, “Kava - A Reflective Java based on Bytecode Rewriting”,ACM,
 Proceedings of the 1st OOPSLA Workshop on Reflection and Software Engineering:

http://lamp.epfl.ch/~magarcia

Adwan Yasin & Ihab Nasra

International Journal of Computer Science and Security (IJCSS), Volume (10) : Issue (4) : 2016 160

 Reflection and Software Engineering, Papers from OORaSE 1999, Pages 155-167
 Springer-Verlag London, ISBN:3-540-67761-5,200.

[21] L. Ertaul and S.Venkatesh. “Novel Obfuscation Algorithms for Software Security”.
 Proceedings of the 2005 International Conference on Software Engineering Research and
 Practice, SERP’05, June, Las Vegas, June, (2005).

[22] P.Sivadasan and P.Sojan Lal. “ARRAY BASED JAVA SOURCE CODE OBFUSCATION
 USING CLASSES WITH RESTRUCTURED ARRAYS”, CoRR (2008).

[23] H.Chen, L.Yuan, B.Huang, P.Yew. “Control Flow Obfuscation with Information Flow
 Tracking”, MICRO 42 Proceedings of the 42nd Annual IEEE/ACM International Symposium
 on Microarchitecture,Pages 391-400 , ACM New York, NY, USA (2009).

[24] S.Schrittwieser and S.Katzenbeisser. “Code Obfuscation against Static and Dynamic
 Reverse Engineering”, IH'11 Proceedings of the 13th international conference on
 Information hiding,Pages 270-284 ,Springer-Verlag Berlin, Heidelberg (2011).

