
 1

SQL Injection Prevention using Query
Dictionary Based Mechanism
Adwan F. Yasin1 Nael Zidan2

Department of Computer Science, Department of Computer Science
Arab American University Arab American University

Jenin , Palestine. Jenin , Palestine.

Abstract— SQL Injection Attack (SQLIA) is a technique of code injection, used to attack data driven applications especially
front end web applications, in which heinous SQL statements are inserted (injected) into an entry field, web URL, or web
request for execution. “Query Dictionary Based Mechanism” which help detection of malicious SQL statements by storing a
small pattern of each application query in an application on a unique document, file, or table with a small size, secure
manner, and high performance. This mechanism plays an effective manner for detecting and preventing of SQL Injection
Attack (SQLIA), without impact of application functions and performance on executing and retrieving data. In this paper we
proposed a solution for detecting and preventing SQLIAs by using Query Dictionary Based Mechanism.

Index Terms—SQL Injection Attack, SQL Injection Attack Detection, SQL Injection Attack Prevention, Query Dictionary.

—————————— ——————————

1 INTRODUCTION

Tructured Query Language (SQL) [1, 2] is a standard,
comprehensive language, based on the relational

model, SQL includes capabilities of many functions. DDL
statements for creating schemes and specifying data types
and constraints. DML statements for specifying data re-
trieves, and data modifications. SQL Language is a textu-
al language that used on all relational database manage-
ment systems (RDBMS), the most known and used are
Oracle, Microsoft SQL Server, MySQL, PostgreSQL, DB2
and SQLite
SQL Injection Attack (SQLIA) [3] is a code injection tech-
nique, used to attack data driven applications especially
front end web applications, in which heinous SQL state-
ments are inserted (injected) into an entry field, web URL,
or web request for execution, used to gain unauthorized
data, or to retrieve information from SQL relational data-
base. SQLIA used most often to attack databases for re-
trieving and extracting secret information such as credit
card information, private information, user information’s,
and financial records. The highest risk application for
attack is web applications, since web applications ac-
cessed through internet and available for all internet users
and devices, also mobile applications now are at highest
risk for SQLIA. An application is vulnerable for SQLIA
since the injection is legal for SQL standards, and DB en-
gine execute it. The vulnerability exists at user inputs, in
which they bypass validation or no validation at all and
passed to dynamic SQL statement without validation and
checking. If we are validating the user input, then with
another way we are forbidden them to entering single
and double quotes, multiple dashes, and SQL Language
keywords in the input.
Hackers have ability to input directly malicious queries
via a web form or by directly insert it to the end of the
URL or to URL variables or through HTTP headers. For
example, if the query accepts username and passwords

like this:
 “SELECT User_Name, User_FullName FROM TA-
BLE_USERS WHERE User_Name=' ' AND Us-
er_Password=' '; “
The above query will select "UserName" from the table
"TBL_USERS" by filtering using query search condition
"User_Name" and " User_Password". Now we can ma-
nipulate it by various SQL code snippets by just input
them in User_Name and User_Password fields at web
form or URL variables like Ahmad' or '1 "= '1
When web form front end processes web form and gener-
ates SQL statement to send it to DBMS, generated SQL
query with above inputs will be:
SELECT User_Name, User_FullName FROM TBL_USERS
WHERE User_Name='Ahmad' AND

 User_Password='' or '1'= '1';
Because of malicious input the query search condition is
always true condition as the query is asking to retrieve
User_Name and User_FullName with condition that Us-
er_Name is Ahmad and USER_PASSWORD equal to '' or 1
= 1. We can also use SQL comments operator “--“, so SQL
engine ignore the portion after comment operator, if Us-
er_Name field input is Ahmad'--, this will manipulate que-
ry search to just check condition on User_Name only,
UNION can also lead to a successful SQL injection attack.
Open Web Application Security Project [4] published that
SQL Injection Attack (SQLIA) is the top one and most
vulnerable among the top ten web application vulnerabil-
ities.
SQL Injection attack not limited for web applications, it
could be on desktop applications, mobile applications.
According to OWASP [5], according to reports on 2008 for
SQL injection vulnerabilities, 25% of all vulnerabilities
reported for web applications.
In this paper we are proposing a solution for detection
and prevention of SQL Injection Attack (SQLIA) using

S

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

479 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://www.researchgate.net/publication/308863419_SQL_Injection_Attack_prevention_based_on_decision_tree_classification?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/304297370_SQL_Injection_A_sample_review?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/264922728_Fundamentals_of_Database_Systems?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/profile/Nael_Zidan7?el=1_x_100&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/profile/Adwan_Yasin?el=1_x_100&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==

2

Query Dictionary Based Mechanism, in which we will
store all queries search portion patterns, then we compare
query generated from web forms back end and compare
with stored one, the result will show if form query is in-
jected, based on result action taken. In section 2 we are
talking about Web Application and SQL Injection attacks,
Section 3 about Types of SQL Injection Attacks. Section 4
about SQL Injection Attack Detection. Section 5 is a sum-
mary of related work on SQL Injection detection and Pre-
vention. Section 6 we are talking about our Proposed so-
lution. In last section the conclusion.

2 WEB APP AND SQL INJECTION ATTACKS
Web application is a computer application that located on
a server and users request it using web browsers through
World Wide Web abbreviated (WWW). Web applications
requested using HTTP or HTTPS protocols. In early web
application started to be static, with web technology de-
velopment most of web applications now dynamic con-
tent, this means its contents from a database. Client using
browser by entering web application URL request a web
application document by using HTTP methods “Get,
Post, Put, Delete”. Web application N-tier architecture
consists of Presentation, Business/Logic, and Data tiers.
The most architectures used is 3-tier in which each layer
can potentially run on a different machine and the three
layers are disconnected as shown on Fig.1.

Fig. 1. 3-teir Web Application Architecture
This architecture in which presentation layer exists on
client machine which is displayed using browsers like
Google Chrome, Mozilla Firefox, Microsoft Internet Ex-
plorer. In addition, the ability of user for changing URL
variables also input fields and weakness of client valida-
tion and easy of validation bypassing allow hackers to
use vulnerabilities of dynamic SQL queries generated at
web application backend programming code.
SQL Injections [6] are attacks by which an attacker makes
changes on the structure of the original SQL query by
inserting (injecting) additional SQL code in the input
fields of the web form or desktop app form or on URL in
order to acquire unauthorized access to the database. De-
spite that vulnerabilities that drive to SQLIAs are well
known and understood, they persist and continued to be
available because of lack of effective solutions and tech-
niques for detecting and preventing them. SQLIA is a
hacking technique in which attacker makes modifications
on SQL statements through web form or application form
inputs or web form URL variables or hidden fields to ac-
cess unauthorized resources. Weakness of input field and
URL variables validation help hacker to success. Web
application vulnerabilities is the main cause of SQL injec-
tion, the most of these vulnerabilities are:

A. Weakness in input validation: this the common
vulnerability in which no input validation for web
form input fields or URL variables, so this allow
hacker to add SQL code easily.

B. Generous privileges: when web application access a
database need a user with specific privileges, for ex-
ample privileges for reading data, modification of
data includes insertion, updating and deleting, privi-
leges for DDL like creating tables, dropping tables.
So the weakness here to use a general user that have
all privileges, so any SQL statement this DB user can
execute. So here if attacker bypass authentication he
gains access to all DB user privileges, for example he
can drop any table.

C. Uncontrolled variable size: variable sizes that un-
controlled and generic specially the biggest domain
of them like String, lead to an easy way for attacker
to alter SQL query with many characters the variable
contains.

D. Error message: the generated error messages by
backend server code may return to client, these mes-
sages may contain database name, tables name and
attributes, etc., this information help hacker to know
the structure of database. So error messages should
not be shown to client and should the web applica-
tion send it to webmaster by email or audit it in a log
file.

E. Dynamic SQL: SQL queries that dynamically gener-
ated on backend code, these queries generated by
concatenating SQL where condition attributes with
variable values from input field or hidden fields or
URL variables. In dynamic SQL the most research
focus since no way to prevent using it, and it should
not infect with SQLIAs.

F. Client-side only control: if web application web
forms validation depends on client side only, this is
vulnerable, since hacker can bypass validation and
validation scripts at client can be altered by using
cross-site scripting.

G. Stored procedures (SP): SP is an assigned name for a
set of SQL statements and logic of procedures that
compiled, verified and stored in database server,
and it controlled through database server security.
SP is more secure than web form dynamic generated
query. The vulnerability to use dynamic generated
SQL statements and use database function like EXEC
to execute generated query, in this case it is vulnera-
ble same with web form dynamic generated query.

H. Input Output file support: if database user has priv-
ilege to execute input form file or output file, then it
will allow hacker to execute any statement that out-
put to text file or excel file, for example MariaDB and
MySQL “SELECT INTO OUTFILE…”.

I. Multiple statements: database user privilege for ex-
ecuting multiple statements allow hacker to use UN-
ION and retrieve additional information, or he can
add additional insert statement or delete statement
or drop table statement.

J. Sub-selects: supporting of sub-selects or sub-queries
lead to vulnerability, so additional SQL query can be

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

480 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://www.researchgate.net/publication/265947554_Web_Application_Security_by_SQL_Injection_DetectionTools?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==

 3

added inside WHRE condition.
There are code practices [7] should be followed to reduce
SQLIA, the most important of these practices are:
A. Manual Coding Practices Defense: here developer

learn SLQIA techniques and how to prevent them on
coding stage, these practices divides to four catego-
ries. Using Parameterized Queries or Stored Proce-
dures, this will reduce vulnerabilities on dynamic
query generation by concatenating, and replace val-
ues with placeholders (parameters) with values. Al-
so stored procedures can check of parameters data
types and hide query structure from attacker. And
developers should avoid using dynamic generation
of queries in Stored procedures. The second category
is Escaping, which is a technique for elimination
SQL keywords. Each Programing language or script
language has suitable connector to DBMS and it has
its own escaping functions embedded in their librar-
ies, as an example MySQL connector for PHP has
mysql_real_escape_string() function. Third category
Data Type Validation, here developer should use suit-
able data types and he should check and validate in-
puts with data types. Last group is White List Filter-
ing [8], by filtering allowed and legitimate key
words, then check for list to accept and execute.

B. SQL DOM: [9] the solution is an executable “sql-
domgen”, which executed with connection to data-
base and generate a compiled Dynamic Link Library
(DLL) file. This file used by developer to execute
against database. DLL file contains classes refer to
them with SQL Domain Object Model (SQL DOM).

C. Parameterized Query Insertion: by using this tech-
nique, SQL queries vulnerabilities is detected inside
source code and replaced with secure parameterized
Structured Query Language (SQL) queries.

3 TYPES OF SQL INJECTION ATTACKS

There are different methods performed together or se-
quentially depending on attacker goals. For an effective
and succeeded SQLIA, attacker should add a command
with right syntax to the original SQL query. SQLIAs [6,10]
classified to:

A. Tautology.
B. Illegal/Logically Incorrect Queries.
C. End of Line Comment.
D. Timing Attack.
E. Union Queries.
F. Blind SQL Injection Attacks.

 G. Piggy-Backed Queries.
For clarifying these types of SQLIAs I will use an example
of a web form that contains two input fields Username &
Password and a login button as shown in Fig. 2
In this example we use below URL
HTTP://www.anydomian.com?page=login to request
login page. We use Username “Ahmad” and Password
“P@ssw0rd”, after Ahmad click on Login button, at
backend web form code that connects to database to veri-
fy that Ahmad account is available and correct. If SQL
query return “True’ Ahmad will be redirected to his ac-

count main page, if “False” a message will appear from
him telling him a wrong username or password. For a
more reading of code read it from [10]. Now we will dis-
cuss the seven types “methods” of SQLIAs and show how
an attacker access Ahmad account main page without
knowing the correct full Account information, in our ex-
ample, the username and password of “Ahmad” account.

Fig. 2. Login Page

A. Tautology
This SQLIA attack injects to SQL query so query
evaluated to “True” always.
Injected Query:
SELECT User_Name, User_FullName
FROM TABLE_USERS
WHERE User_Name='Ahmad' AND Us-
er_Password='' or '1'= '1';

B. Illegal/Logically Incorrect Queries
This type of SQLIA collect database information
from making page return error messages from
backend code. Attacker inject junk input to URL or
input fields or SQL query tokens to produce syntax
or logical errors. In our example attacker inject to
URL variables a single quote.
HTTP://www.anydomian.com?page=login’
Injected Query:
SELECT PAGE_LOC FROM TBL_PAGES WHERE
Page_ID=login’
This injection will fire a syntax error when generat-
ing dynamic query that return location of login
page form database and the error will show:
Error: Invalid Query “SELECT PAGE_LOC FROM
TBL_PAGES WHERE Page_ID=login’”

C. End of Line Comment
In this type of SQLIA attacker use SQL comment
operator “- - “to ignore part from SQL query
search.
In our example attacker insert for Username input
field “Ahmad’--‘“and Password “12345”
Injected Query:
SELECT User_Name, User_FullName
FROM TABLE_USERS
WHERE User_Name='Ahmad'-- AND Us-
er_Password=’12345’;

D. Timing Attack
An inference attack. In this type attacker make tim-
ing between web page responses. This technique
used “IF-Then” conditional statement for queries
injection and “WAITFOR” to make database delay
query response by a specific time.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

481 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://www.researchgate.net/publication/269302189_Algorithm_to_prevent_back_end_database_against_SQL_injection_attacks?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/269302189_Algorithm_to_prevent_back_end_database_against_SQL_injection_attacks?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/266225425_Preventing_SQL_Injections_in_Online_Applications_Study_Recommendations_and_Java_Solution_Prototype_Based_on_the_SQL_DOM?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/265947554_Web_Application_Security_by_SQL_Injection_DetectionTools?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261468605_A_Taxonomy_of_SQL_Injection_Detection_and_Prevention_Techniques?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/4200496_SQL_DOM_compile_time_checking_of_dynamic_SQL_statements?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==

4

E. Union Queries
This type attacker appends a new query to original
one using SQL UNION keyword, so he can access
to unauthorized data. In our example attacker can
inject a union query to URL:
HTTP://www.anydomian.com?page=login’ union
all select UserName from TBL_USERS’
Injected Query:
SELECT PAGE_LOC FROM TBL_PAGES WHERE
Page_ID='login' UNION ALL SELECT
USERNAME FROM TBL_USERS
This injected query will return all user names
stored in table TBL_USERS which is not authorized
to page navigator to access to this information.

F. Blind SQL Injection Attacks
An inference attack, as we talked one of best code
practices to hide error messages from shown to cli-
ent. So in this case attacker does not have any error
messages since developer make error to a generic
web page error. It difficult for attacker now to
make SQLIA but it does not impossible. Attacker
can request True/False requests from SQL queries
and he could success and steal information.

G. Piggy-Backed Queries
In this SQLIA type, attacker use SQL statements
delimiter “;”. Attacker append additional state-
ment so he can execute more that query. In our ex-
ample attacker could add another query to URL:
HTTP://www.anydomian.com?page=login’;DRO
P TBALE TABLE_USERS’
Injected Query:
SELECT PAGE_LOC FROM TBL_PAGES WHERE
Page_ID='login'; DROB TABLE TABLE_USERS
So here in this case first SQL query is legal, but the
second is illegal and will fire database to drop table
TABLE_USERS.

4 SQL INJECTION ATTACK DETECTION
There are many techniques used for SQLIA detection [2,
7], we will present them:
A. SQLUnitGen

Abbreviation for “SQL Injection Testing Using Static
and Dynamic Analysis. This technique proposed by
Shin and fellow workers. It uses static analysis to
track flow of user inputs for testing attacks. Most
tools and techniques utilize “JCrasher" which is a
tool used to obtain test cases upon generated attack
inputs.

B. MUSIC
Abbreviation for “Mutation-based SQL Injection
vulnerabilities checking". This technique proposed
by Zulkemine. He used mutation method based on
error checking and catching by injecting syntax er-
rors to check if any misshapen occurred. Then by
comparing output it can conclude if a query contains
misshapen and vulnerabilities.

C. SUSHI
It is an abbreviation which stands for “string con-

straint solver”. It proposed by Fu and Li. It is a recur-
sive algorithm that found it very help in finding
complex SQLIAs. It Solves SLSE (Simple Linear
String Equation) constraint in an effective approach.

D. Ardilla
A technique and a tool for creating SQLIA. It pro-
posed by Kiezun and fellow workers. This tool gener-
ates attacks as inputs and run the application for each
attack input. So it can check and detect the SQLIA
from generated attack inputs.

E. String Analyzer
Wassermann and Su proposed this technique. Their
solution depends on a based grammar algorithm, it
strategizes string values as context free grammar
(CFGs) and operations based on transducers of lan-
guage following minimization. This technique then
labels user input strings and summarize them and
find contexts. Then by regular languages and context
free languages usage, it checks the security of each
labeled string in aspect of syntax.

F. PHP Miner
It is a solution rather than a tool, it proposed by Khin
Shar and Kuan Tan. This solution statically looks for
attributes in source code, then produces models and
flowcharts of vulnerabilities prediction.

G. Vulnerability and Attack Injection
A method proposed by Fonseca and fellow workers,
the solution upon attack application by pragmatic
SQL injection vulnerabilities. For getting more
pragmatic results the solution used predefined col-
lected data from actual attacks. The technique com-
posed of two parts that work together, a tool for in-
jection attack and another for injection of vulnerabil-
ity.

5 RELATED WORK
Deevi Radha Rani, B.Siva Kumar, L.Taraka Rama Rao,
V.T.Sai Jagadish, M.Pradeep [3]. They proposed a tech-
nique that handles all SQLIAs types. The technique upon
encryption of user information and using of stored pro-
cedures. They apply that on users’ authentication infor-
mation (Username, Password). They encrypt user data
with AES algorithm using 40-bit secret key. On user regis-
tration, his info encrypted and stored as a chipper text in
database. On user authentication, on back end code at
login form called stored procedure with parameters
“Username, Password, Secret Key”. Stored procedure
encrypt Username & Password using secret key, after that
it compares the generated encrypted username and
password with encrypted username & password saved at
users table. This technique is not suitable for dynamic
queries from various tables since encryption of big data
will consume time and size. But it is very valuable for
injection attacks on user authentication.
Biji.K.P [11] proposed data dictionary based mechanism
against SQLIA. The method for detecting ant prevention
SQLIA using a combination of DDL & DML Mapping.
She creates a new database image as a mirror from prin-
cipal database. Mirror database contains schema structure

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

482 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://www.researchgate.net/publication/304297370_SQL_Injection_A_sample_review?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261468605_A_Taxonomy_of_SQL_Injection_Detection_and_Prevention_Techniques?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==

 5

and data contents of SQL queries implemented in web
application forms, which will be stored in parallel. She
generates a formula which it is a combination of DDL &
DML Mapping along with Vectorization of SQL Queries.
The Vectorization of SQL queries stored in a new created
tables in mirror database, for including different syntax.
She resolves the parse tree of different generated queries.
She monitors the detection of abnormalities among the
queries within production database from the result of the
output of the different generated queries. For SQLIA de-
tection shed used two methods. Static method which is
known as pre-generating approach. In static method de-
velopers follow some guidelines and validation checking.
The second method is Dynamic approach which is known
as post-generated approach, a technique used in run time.
It analysis dynamic or runtime generated SQL query from
web form after user inputs or web form request.
Inyong Lee a, Soonki Jeong b, Sangsoo Yeoc, Jongsub
Moond [12]. They proposed a simple, easy and effective
technique for detecting SQLIAs based on static and dy-
namic analysis and by taking of attribute values at
runtime (Dynamic Analysis) and compare it with original
one in which also removed attribute values (Static Analy-
sis). The technique used for numeric attributes and string
attributes. They create an algorithm for attribute values
removal from query. Also they create a generalized
SQLIA detection algorithm to check if the query at web
forms is normal or abnormal in advance.
Debabrata Kar, Suvasini Panigrahi [13] proposed a tech-
nique for SQLIA detection using query transformation
and hashing. Their technique to transform the original
query parameter values “where condition parameter”
with question mark symbol “?”, and SQL keyword to
uppercase keywords, system objects like table names and
column names with keywords they proposed. So with
this transformation they reduce number of different que-
ries structure, also this will reflect on performance of
search. They used hashing function for generating unique
hash key, so the search will be efficient during runtime.
The advantages of using hashing is the size of hash key
will be smaller than the transformed query, so size need-
ed in storage reduced. Also the same hash will be primary
index, as they are unique, to facilitate fast and efficient
searching at runtime.
R.Latha, Dr.E. Ramaraj [14] proposed a technique for de-
tection of SQLIA by replacement of query search condi-
tion attributes string of original query used in web form
with symbols they proposing like “PQ, GQ, STR, NUM,
etc.”. At runtime they are making a replacement of query
search condition attributes for both the original query and
dynamic generated query from web form after user in-
puts. So they have now a two generated restructured que-
ries. They compare the two restructured queries for
SQLIA detection by measuring the distance between the
two restructured queries using levenstein method. This
technique satisfies both static and dynamic analysis.
Swapnil Kharche1, Jagdish patil, Kanchan Gohad, Bharti
Ambetkar [15]. They proposed an efficient technique and
algorithm for detection and prevention of SQLIAs using
Aho–Corasick pattern matching algorithm. Their pro-

posed technique has two phases, static phase and dynam-
ic phase. In static phase they create a list of known anom-
aly pattern, and SQL queries that checked by enforcing
static pattern matching algorithm by comparing of known
anomaly pattern list created. During runtime and using
dynamic phase if new anomaly is occurring, then new
anomaly will be generated and added to static anomaly
pattern list. On new anomaly generation score calculated
for the query, if the score greater than a determined
threshold then the query passed to an administrator to
analyses the query manually, if the query infected a new
anomaly generated and added to static anomaly list.

6 PROPOSED SOLUTION
We propose an effective solution for SQL Injection detec-
tion and prevention without any impact on application
functions and performance. This solution based on a Que-
ry Dictionary Mechanism. Our solution general view fo-
cus on:

A. SQL query statements numbers.
B. SQL query has UNION
C. SQL Query where suffix pattern.

To save this information about each query, many ap-
proaches can be used. It could be generating a memory
allocation at application start, so this information can be
collected for all queries exists on the application start one
time, or it could be collected on first query calling and
appended to memory allocation. For memory allocation
we propose to create application variable that contains a
list of objects to save query information on, the allocation
created below using C# language and ASP. NET web ap-
plication.
class SQLIA_DP
{
 public int Id { get; set; }
 public string Query_Caption { get; set; }
 public byte Query_Statemnts_Count {get;set;}
 public bool Query_Has_Union { get; set; }
 public string Query_Pattern { get; set; }
 }
List<SQLIA_DP> ls = new List<SQLIA_DP>;
At Global class, in Application_Start method
we create an application variable that holds
the ls instance of query information, the
statement for creating is:
Application["SQLIA_DET_PREV"] = ls;
Another approach to save query information is in a JSON
file or in NoSQL Database for example MongoDB, the
format as following:
[“Id”: 1,
 “Query_Caption”:”loginfrm”,
 “Query_Statements_Count”: 1,
 “Query_Has_Union”: “FALSE”,
 “Query_Pattern”:

 ” WHEREUser_Name=ANDUser_Password=”
]
Another approach to save query information on any rela-
tional database table, it could be on same application da-
tabase or in a different database, table structure will be:

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

483 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://www.researchgate.net/publication/283185380_SQL_Injection_Detection_Based_On_Replacing_The_SQL_Query_Parameter?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261318459_Prevention_of_SQL_Injection_attack_using_query_transformation_and_hashing?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/220095820_A_novel_method_for_SQL_injection_attack_detection_based_on_removing_SQL_query_attribute_values?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==

6

CREATE TABLE [dbo].[TBL_SQLIA_DET_PREV](
[Id] [BIGINT] IDENTITY(1,1) PRIMARY KEY,
[Query_Caption] [VARCHAR](15),
[Query_Statements_Count] [TINYINT] NOT NULL,
[Query_Has_Union] [BIT] NOT NULL,
[Query_Pattern] [VARCHAR](1000) NOT NULL);
Another approach to save query information on XML file
as shown in Fig. 3.

Fig. 3 XML Format for SQLIA_DET_PREV
For Query Pattern extraction, it could be generated and
inserted manually by developers or database designers,
or developers can use below proposed algorithm that
automatically extract query pattern and insert it to
SQLIA_DET_PREV list, or developers could use this algo-
rithm at runtime. The algorithm for Query Pattern extrac-
tion as following and as shown on Fig. 4:
STEP 1: Take Dynamic generated SQL Query without
values from source code.
STEP 2: Check if UNION key word exists and
STEP 3: Count semicolon times which represents number
of SQL statements in Query.
STEP 4: Split SQL Query by “WHERE” key word.
STEP 5: If Splitted SQL Query Output Array has more
than one item then next steps for second items in Array, if
it has one item then next steps for First Item (One Item
means Query does not have where statement)
STEP 6: Remove single quote and values between from
chosen array item.
STEP 7: Remove each value after SQL Equal Operator “=”
and before first Space.
STEP 8: Remove all Spaces.
STEP 9: Save Needed information on SQLIA_DET_PREV
list, if Semicolon times is zero then save it one.
So our example query “SELECT User_Name, Us-
er_FullName FROM TABLE_USERS WHERE Us-
er_Name='Ahmad' AND User_Password='12345’”
Does not has UNION, zero semicolon, after splitting and
execute steps from 5 to 9, Query Pattern will be “WHERE
User_Name=ANDUser_Password=”, values saved as
shown in Fig. 3, since semicolon times is zero, this mean
the query consist of one statement. For “Query_Caption”,
this field can be used for query retrieve to increase search
performance, so developer can use it the same for exam-
ple “loginfrm” for queries in login form as shown in Fig. 3
so I linked it with web form class which can extracted
dynamically.
Above extraction algorithm could be used static or dy-
namic, depends on application and developer needs. On
application run and after user enter the inputs send his
request and we assume here user is an attacker and he

injected SQL query. Query after its dynamic generation
and before sending to database engine for execution
should send to SQLIA_CHECK algorithm which de-
scribed as following:
STEP 1: Use Query Pattern Extraction Algorithm above to
extract new dynamic generated query with parameter
values.
STEP 2: Create SQLIA_DP object
(SQLIA_DP_CURRENT).
STEP 3: Get Query Pattern object saved at
SQLIA_DET_PREV List, if not available it should be gen-
erating using Query Pattern Extraction Algorithm and
save it to (SQLIA_DP_ORIGIN).
STEP 4: Compare Query_Statemnts_Count on
SQLIA_DP_CURRENT and SQLIA_DP_ORIGIN, if result
is equal GO TO STEP 4, if not Return 1 and Exit.
STEP 5: Compare Query_Has_Union on
SQLIA_DP_CURRENT and SQLIA_DP_ORIGIN, if equal
GO TO STEP 5, if not Return 1 and Exit.
STEP 6: Compare Query_Pattern on
SQLIA_DP_CURRENT and SQLIA_DP_ORIGIN, if equal
Return 0 and Exit, if not Return 1 and Exit.
Above Algorithm return value 1 means there is an
SQLIA, so query execution should be canceled. If return
value 0 then query is clean and it should be send to data-
base engine for execution.
In our example if attacker inject a query “SELECT Us-
er_Name, User_FullName FROM TABLE_USERS
WHERE User_Name='Ahmad' AND

 User_Password='' or '1'= '1';
The generated query will be send to SQLIA_CHECK AL-
GORITHM, the result explanation will be as following:
STEP 1: Query Pattern will be
“WHEREUser_Name=ANDUser_Password=or=” and no
UNION key word and 1 statement, this info saved to
(SQLIA_DP_CURRENT) object.
STEP 3: Get Saved Query Pattern from List, this will re-
turn, 1 statement, no UNION, “WHERE-
User_Name=ANDUser_Password=” and saved to
(SQLIA_DP_ORIGIN) object.
STEP 4: Compare result is equal Go to Step 5
STEP 5: Compare result is equal Go to Step 6
STEP 6: Compare Query Pattern is not Equal, Algorithm
return 1 so there is an SQLIA and Query does not for-
ward to database engine.

7 CONCLUSION
In this paper we have presented an effective SQL Injec-
tion Attack detection and prevention without any impact
in application functions and performance. Our proposed
solution used static and dynamic approaches. Easy to
implement by developers and database designers or de-
velopers. Our solution detects all types of SQLIAs. Upon
application needs or and developer experience or and
application sensitive degree it could be implemented for
part of queries or for all queries, it could be implemented
static or dynamic. Query information extracted could be
stored in encrypted manner to make the solution more
secure. As a future work we could implement our solu-

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

484 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

 7

tion and calculate performance issues and compare it
with other solutions.

Fig. 4 Query Pattern Extraction Algorithm

REFERENCES
[1] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of Database

Systems, Sixth Edition”, 2011.
[2] Shubham Mukherjee, Sudeshna Bora, “SQL Injection: A Sample

Review”, 2015.
[3] Deevi Radha Rani, B.Siva Kumar, L.Taraka Rama Rao, V.T.Sai

Jagadish, M.Pradeep, “Web Security by Preventing SQL Injec-
tion Using Encryption in Stored Procedures”, 2012.

[4] OWASP (Open Web Application Security Project)
https://www.owasp.org/index.php/Top_10_2013-Top_10,
visited on May 2015.

[5] B.Hanmanthu, B.Raghu Ram, Dr.P.Niranjan,” SQL Injection
Attack Prevention Based on Decision Tree Classification”, 2015.

[6] Atefeh Tajpour , Suhaimi Ibrahim, Mohammad Sharifi, “Web
Application Security by SQL Injection DetectionTools”, 2012.

[7] Amirmohammad Sadeghian, Mazdak Zamani, Azizah Abd.
Manaf, “A Taxonomy of SQL Injection Detection and Preven-
tion Techniques”, 2013.

[8] Janot, E. and P. Zavarsky. “Preventing SQL Injections in On-
lineApplications: Study, Recommendations and Java Solution
Prototype Based on the SQL DOM.” in OWASP App. Sec. Con-
ference. 2008.

[9] McClure, R.A. and I.H. Kruger. “SQL DOM: compile time
checking of dynamic SQL statements. in Software Engineering,
2005.” ICSE 2005. Proceedings. 27th International Conference
on. 2005.

[10] Mahima Srivastava, “Algorithm to Prevent Back End Database
against SQL Injection Attacks”, 2014.

[11] Biji.K.P, “Data Dictionary Based Mechanism against SQL Injec-
tion Attacks”, 2015.

[12] Inyong Lee a, Soonki Jeong b, Sangsoo Yeoc, Jongsub Moond,
“A novel method for SQL injection attack detection based on
removing SQL query attribute values”, 2011.

[13] Debabrata Kar, Suvasini Panigrahi, “Prevention of SQL Injec-
tion Attack Using Query Transformation and Hashing”, 2013.

[14] R.Latha, Dr.E. Ramaraj, “SQL Injection Detection Based On
Replacing The SQL Query Parameter Values”, 2015.

[15] Swapnil Kharche1, Jagdish patil, Kanchan Gohad, Bharti Am-
betkar, “Preventing Sql Injection Attack Using Pattern Match-
ing Algorithym”, 2015.

Adwan Yasin is an associate Professor, For-
mer dean of Faculty of Engineering and Infor-
mation Technology of the Arab American Uni-
versity of Jenin, Palestine. Previously he
worked at Philadelphia and Zarka Private Uni-
versity, Jordan. He received his PhD degree
from the National Technical University of
Ukraine in 1996. His research interests include
Computer Networks, Computer Architecture,
Cryptography and Networks Security.

Nae’l A. Zidan received the B.S. in Computer
Information Technology in 2005 from Arab
American University Jenin (AAUJ), Palestine.
He is a Master candidate of Computer Science
at AAUJ, Palestine. He has 10+ years’ experi-
ence of programming and development, net-
working, data-bases, and virtualization. His
research interests include Computer Networks
and Information Security.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 14, No. 6, June 2016

485 https://sites.google.com/site/ijcsis/
ISSN 1947-5500 The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

https://www.researchgate.net/publication/308863419_SQL_Injection_Attack_prevention_based_on_decision_tree_classification?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/308863419_SQL_Injection_Attack_prevention_based_on_decision_tree_classification?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/304297370_SQL_Injection_A_sample_review?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/304297370_SQL_Injection_A_sample_review?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/283185380_SQL_Injection_Detection_Based_On_Replacing_The_SQL_Query_Parameter?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/283185380_SQL_Injection_Detection_Based_On_Replacing_The_SQL_Query_Parameter?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/269302189_Algorithm_to_prevent_back_end_database_against_SQL_injection_attacks?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/269302189_Algorithm_to_prevent_back_end_database_against_SQL_injection_attacks?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/266225425_Preventing_SQL_Injections_in_Online_Applications_Study_Recommendations_and_Java_Solution_Prototype_Based_on_the_SQL_DOM?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/266225425_Preventing_SQL_Injections_in_Online_Applications_Study_Recommendations_and_Java_Solution_Prototype_Based_on_the_SQL_DOM?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/266225425_Preventing_SQL_Injections_in_Online_Applications_Study_Recommendations_and_Java_Solution_Prototype_Based_on_the_SQL_DOM?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/266225425_Preventing_SQL_Injections_in_Online_Applications_Study_Recommendations_and_Java_Solution_Prototype_Based_on_the_SQL_DOM?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/265947554_Web_Application_Security_by_SQL_Injection_DetectionTools?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/265947554_Web_Application_Security_by_SQL_Injection_DetectionTools?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/264922728_Fundamentals_of_Database_Systems?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/264922728_Fundamentals_of_Database_Systems?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261468605_A_Taxonomy_of_SQL_Injection_Detection_and_Prevention_Techniques?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261468605_A_Taxonomy_of_SQL_Injection_Detection_and_Prevention_Techniques?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261468605_A_Taxonomy_of_SQL_Injection_Detection_and_Prevention_Techniques?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261318459_Prevention_of_SQL_Injection_attack_using_query_transformation_and_hashing?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/261318459_Prevention_of_SQL_Injection_attack_using_query_transformation_and_hashing?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/220095820_A_novel_method_for_SQL_injection_attack_detection_based_on_removing_SQL_query_attribute_values?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/220095820_A_novel_method_for_SQL_injection_attack_detection_based_on_removing_SQL_query_attribute_values?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/220095820_A_novel_method_for_SQL_injection_attack_detection_based_on_removing_SQL_query_attribute_values?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/4200496_SQL_DOM_compile_time_checking_of_dynamic_SQL_statements?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/4200496_SQL_DOM_compile_time_checking_of_dynamic_SQL_statements?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/4200496_SQL_DOM_compile_time_checking_of_dynamic_SQL_statements?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==
https://www.researchgate.net/publication/4200496_SQL_DOM_compile_time_checking_of_dynamic_SQL_statements?el=1_x_8&enrichId=rgreq-9340c4ce44024300413a4de83a11c359-XXX&enrichSource=Y292ZXJQYWdlOzMwNTQwNzMwNztBUzozODU1MjM1NjM2Nzk3NDdAMTQ2ODkyNzM4ODcxMA==

