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Abstract. We present a simple algorithm that reduces the time
complexity of solving the linear system Gx = b, where G is a
centrosymmetric/skew-centrosymmetric matrix. We also reduce the time
complexity of solving some complex linear systems. We propose efficient
methods for multiplying centrosymmetric/skew-centrosymmetric matrices.

1. Introduction. Melman [7] proposed an efficient algorithm for com-
puting the product Gv, where G is a symmetric centrosymmetric matrix
and v is a vector. In this paper, we present a simple efficient algorithm for
solving Gx = b, where G is a centrosymmetric/skew-centrosymmetric ma-
trix and b is a vector. In our algorithm G does not have to be symmetric or
skew-symmetric. Some complex linear systems can be converted to real sys-
tems and then solved by using our algorithm. Finally, we propose efficient
methods for finding the product MN , where M and N are n × n matrices
and at least one of them is centrosymmetric or skew-centrosymmetric.

We employ the following notation. We denote the transpose of a matrix
A by AT . We use the notation bxc for the largest integer less than or equal
to x. As usual, I denotes the identity matrix. Throughout this paper we
let δ = bn

2
c. By the main counterdiagonal (or simply counterdiagonal) of

a square matrix we mean the positions which proceed diagonally from the
last entry in the first row to the first entry in the last row. We mean by
the time complexity the number of flops. When counting flops, we treat
addition/subtraction the same as multiplication/division.

Definition 1.1. The counteridentity matrix, denoted J , is the square
matrix whose elements are all equal to zero except those on the counter-
diagonal, which are all equal to 1.

Multiplying a matrix A by J from the left results in reversing the rows
of A and multiplying A by J from the right results in reversing the columns
of A. Throughout this paper J is used to denote the counteridentity matrix.

There are various kinds of symmetries that we will use in this paper.
For convenience, we summarize them in the following definition.

Definition 1.2. Let A be an n × n matrix.

(1) A is persymmetric if JAJ = AT .
(2) A is centrosymmetric if JAJ = A.
(3) A is skew-centrosymmetric if JAJ = −A.

Centrosymmetric and skew-centrosymmetric matrices arise in many fields
including communication theory, statistics, physics, harmonic differential
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quadrature, differential equations, numerical analysis, engineering, sinc
methods, magic squares, and pattern recognition. For applications of these
matrices, see [1, 3, 4, 5, 6, 8]. Note that symmetric Toeplitz matrices
are symmetric centrosymmetric, and skew-symmetric Toeplitz matrices are
skew-symmetric skew-centrosymmetric.

Now we state the following two theorems that can be proved easily.
The second theorem can be found in [2].

Theorem 1.3. Let S be an n× n skew-centrosymmetric matrix. If n is
even, then S can be written as

S =

[

A −JCJ

C −JAJ

]

,

where A, J and C are δ× δ. If, in addition, S is skew-symmetric, then A is
skew-symmetric and C is persymmetric. If n is odd, then S can be written
as

S =





A z −JCJ

y 0 −yJ

C −Jz −JAJ



 ,

where A, J , and C are δ×δ, z is δ×1, and y is 1×δ. If, in addition, S is skew-
symmetric, then y = −zT , A is skew-symmetric, and C is persymmetric.

Theorem 1.4. Let H be an n×n centrosymmetric matrix. If n is even,
then H can be written as

H =

[

A JCJ

C JAJ

]

,

where A, J , and C are δ × δ. If, in addition, H is symmetric, then A is
symmetric and C is persymmetric. If n is odd, then H can be written as





A z JCJ

yT q yT J

C Jz JAJ



 ,

where A, J , and C are δ×δ, z and y are δ×1, and q is a scalar. If, in addi-
tion, H is symmetric, then y = z, A is symmetric, and C is persymmetric.
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2. Algorithms. We present simple efficient algorithms for solving
Gx = b, where G is centrosymmetric/skew-centrosymmetric and x and b

are vectors. We do that by transforming the problem to solving two linear
systems “half” the size of the original one. First, we handle centrosym-
metric matrices of even order, then centrosymmetric matrices of odd order,
then skew-centrosymmetric matrices, then other matrices such as Hermi-
tian persymmetric matrices.

2.1 Centrosymmetric Matrices of Even Order. Let H be an n×n cen-
trosymmetric matrix, where n is even, let x and b be n × 1 vectors, let H

be decomposed as in Theorem 1.4, and let

Q1 =
1√
2

[

I I

−J J

]

,

where I and J are δ × δ. Then, Q1
T HQ1 = D1, where

D1 =

[

L 0
0 M1

]

,

where L = A − JC and M1 = A + JC. Now let

x =

[

x1

x2

]

and b =

[

b1

b2

]

,

where x1, x2, b1, b2 are δ×1. Thus, Hx = b if and only if D1Q1
T x = Q1

T b

if and only if

[

L 0
0 M1

] [

x1 − Jx2

x1 + Jx2

]

=

[

b1 − Jb2

b1 + Jb2

]

.

The last equation can be simplified to

[

Lx1
′

M1x2
′

]

=

[

b1
′

b2

′

]

,

where x1
′ = x1 − Jx2, x2

′ = x1 + Jx2, b1
′ = b1 − Jb2, and b2

′ = b1 + Jb2.
Thus, to solve Hx = b for x:
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(1) Find L, M1, b1
′, and b2

′.
(2) Solve the two systems Lx1

′ = b1
′ and M1x2

′ = b2
′ for x′

1
and x′

2
.

(3) Obtain the solution

x =

[

x1

x2

]

of the original system from x1
′ and x2

′ as follows:

x1 =
1

2
(x1

′ + x2
′) , x2 =

1

2
J (x2

′ − x1
′) .

Note that the time complexity of the first step of the algorithm is 1

2
n2+

O(n) ( 1

2
n2+n additions/subtractions and no multiplications/divisions) and

the time complexity of the third step is O(n) (n additions/subtractions and
n multiplications). The time complexity of the second step depends on the
method used to solve the systems. The second step is the step that leads
to the reduction of the time complexity, because instead of solving a linear
system of n equations, we end up solving two linear systems half the size of
the original one. For example, if the original system is solved with Gaussian
elimination, then the time complexity will be 2

3
n3+O(n2). But, if Gaussian

elimination is used to solve the two systems in the second step, then the
time complexity of our algorithm will be 1

6
n3 +O(n2), which is a significant

reduction. If a method more efficient than Gaussian elimination is used,
then the time complexity of our algorithm will be less. If, in addition, H is
symmetric or skew-symmetric or Toeplitz, then the time complexity of our
algorithm will reduce further.

2.2 Centrosymmetric Matrices of Odd Order. Let H be an n × n cen-
trosymmetric matrix, where n is odd, let x and b be n × 1 vectors, let H

be decomposed as in Theorem 1.4, and let

Q2 =
1√
2





I 0 I

0
√

2 0
−J 0 J



 ,

where I and J are δ × δ. Then, Q2
T HQ2 = D2, where

D2 =

[

L 0
0 M2

]

,
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where L = A − JC and

M2 =

[

q
√

2yT√
2z A + JC

]

.

Now let

x =





x1

α

x2



 and b =





b1

β

b2



 ,

where x1, x2, b1, b2 are δ × 1 and α and β are numbers. Then Hx = b if
and only if D2Q2

T x = Q2
T b if and only if

[

Lx1
′

M2x3

]

=

[

b1
′

b3

]

,

where x1
′ = x1 − Jx2, b1

′ = b1 − Jb2,

x3 =

[√
2α

x2
′

]

, b3 =

[ √
2β

b1 + Jb2

]

,

and x2
′ = x1 + Jx2.

Thus, to solve Hx = b for x:

(1) Find L, M2, b1
′, and b3.

(2) Solve the two systems Lx1
′ = b1

′ and M2x3 = b3 for x′

1
and x3.

(3) Let

x3 =

[

γ

x2
′

]

,

where x2
′ is δ × 1. Obtain the solution

x =





x1

α

x2
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of the original system from x1
′ and x3 as follows:

x1 =
1

2
(x1

′ + x2
′) , α =

1√
2
γ, x2 =

1

2
J (x2

′ − x1
′) .

Note that the time complexity of the first step of the algorithm is
1

2
n2 + O(n) and the time complexity of the third step is O(n). The time

complexity of the second step depends on the method used to solve the
systems. (See the last paragraph of the last subsection.)

2.3 Skew-centrosymmetric Matrices. The algorithm for skew-
centrosymmetric matrices of even order can be derived in a similar way
to the algorithm for centrosymmetric matrices of even order, but here we
use the decomposition described in Theorem 1.3. Another way to do it is
as follows. Let S be an n × n skew-centrosymmetric matrix, where n is
even, let b be an n × 1 vector, let m = n

2
, and let

E =

[

−I 0
0 I

]

,

where I is the m × m identity matrix. It is easy to see H = ES is cen-
trosymmetric. Thus, to solve Sx = b for x, solve Hx = Eb by the algorithm
of Subsection 2.1.

2.4 Complex Systems. Let R = H + iS, where H is an n× n real cen-
trosymmetric matrix and S is an n× n real skew-centrosymmetric matrix.
Let X = X1 + iX2 and B = B1 + iB2, where X1, X2, B1, and B2, are n×1
real vectors. Then, RX = B if and only if

[

H −S

S H

] [

X1

X2

]

=

[

B1

B2

]

.

Note that the above system can be written as

[

H JSJ

S JHJ

] [

X1

X2

]

=

[

B1

B2

]

.

Now we can use the algorithm of Subsection 2.1 to solve this system, which
leads to a reduction in the time complexity. Thus, instead of solving the
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complex system RX = B, we can solve the two real systems (H−JS)X ′

1
=

B′

1
and (H +JS)X ′

2
= B′

2
, where B′

1
= B1−JB2 and B′

2
= B1 +JB2. The

solution of the complex system is 1

2
(X ′

1
+X ′

2
)+ 1

2
iJ(X ′

2
−X ′

1
). For example,

if R is an n × n Hermitian persymmetric matrix, then R = H + iS, where
H is an n × n real symmetric centrosymmetric matrix and S is an n × n

real skew-symmetric skew-centrosymmetric matrix. Hence, we can use the
idea described above to solve the complex system RX = B.

3. Multiplication of Matrices. Let M and N be n × n matrices
and let at least one of them be centrosymmetric/skew-centrosymmetric. To
reduce the time complexity of finding the product MN , we use similar ideas
to those we used in the previous section. For example, if M is centrosym-
metric of even order, then we replace M by Q1D1Q

T

1
(see Subsection 2.1).

If the standard multiplication algorithm is used, then the reduction in time
complexity that results from using this idea is as follows:

(1) About 75% if both matrices are centrosymmetric/skew-centrosymmetric
(or one is centrosymmetric and the other is skew-centrosymmetric).
Here, instead of multiplying two n × n matrices, we end up multiply-
ing two matrices “half” the size.

(2) About 50% if one of the matrices is arbitrary and the other is
centrosymmetric/skew-centrosymmetric. Here, instead of multiplying
two n × n matrices, we end up multiplying four matrices “half” the
size.

Note that a more efficient algorithm like Strassen’s algorithm or Cop-
persmith and Winograd’s algorithm can be used to multiply the matrices
“half” the size mentioned above instead of using the standard multiplica-
tion algorithm.
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