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Abstract

The energy expressions for QD presented in high- and low-magnetic fields are
calculated. An interpolation formula between the energies of the quantum dot in
both limits is proposed. The formula is implemented to produce the energy spectra
of the parabolic quantum dot in the presence of a magnetic field of arbitrary strength.
The transitions in the angular momenta of the ground state energy of interacting
electrons confined in the quantum dot as a function of magnetic field strength is
studied. A good agreement is obtained when our results are tested against exact
numerical work.

1. Introduction

Nanostructure technologies allow the lateral confinement of electrons in all three spa-
tial dimensions in semiconductor structures called quantum dots (QDs). In such away,
the electrons are quantized into a discrete spectrum of energy levels. The confinement
in z-direction, which is the growth direction, is assumed to be stronger than that in the
xy-plane, so that the QDs may be regarded as artificial atoms with disk-like shapes.

The growing interest in this field is motivated by the physical effects and the poten-
tial device applications, to which many experimental [1-9] and theoretical [10-30] works
have been devoted. The effects of the magnetic field, on the states of the interacting
electrons, have been extensively studied. Maksym and Chakraborty [10] have studied the
eigenstates of the interacting electrons, parabolically confined in the QDs, in a magnetic
field perpendicular to the plane of the QD, and they found that the coulomb interaction
energy has significant effect on the magnetic field dependence of the energy spectrum.
Wagner et.al. [11] have also studied the same problem in addition to the spin, and predict
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the oscillations between spin-singlet and spin-triplet ground states. Pfannkuche and col-
laborators [12] and Merkt [13] have studied the magneto-optical response to far-infrared
radiation (FIR) of QD-Helium. De Groote, Hornos and Chaplik [14] have investigated
the thermodynamic properties of QDs, such as heat capacity and magnetization, as a
sensitive probe to the ground state transitions. Taut [15, 16] obtained exact analytical
results for the energy spectrum of a system of two electrons interacting via a Coulomb
force for specific values of the magnetic field. He also produced the eigenenergies of the
interacting system in high- and low-magnetic field limits and suggested an eigenenergy
formula to interpolate between both limits.

In this work, we propose an accurate interpolation formula to reproduce the spectrum
of the interacting system and then use this formula to study the energy level-crossing and
show the transitions in the orbital momenta of the ground state energy of two interacting
electrons confined in a parabolic quantum dot presented in a magnetic field of arbitrary
strength.

2. The Model

The effective-mass Hamiltonian for two interacting electrons, confined in a QD by
a parabolic potential of the form m∗ω2

0r
2/2, in a magnetic field applied parallel to the

z-direction, and perpendicular to the plane where the electrons are restricted to move, is
written as

H =
2∑
i=1

{
1

2m∗i
(~Pi + e ~A(~ri))2 +

1
2
m∗iω

2
0r

2
i

}
+

e2

4πKε0|~r2 − ~r1|
+ Hspin, (1)

where the two-dimensional vectors ~r1 and ~r2 describe the positions of the first and the
second electron in the xy-plane, respectively, and m∗, ω0 and K are the electron effective
mass, confinement frequency and dielectric constant of the medium, GaAs, respectively.

Applying the coordinates ~r = ~r2−~r1, ~R = 1
2(~r1 +~r2) and the corresponding momenta

transformations, the total Hamiltonian can be decoupled to center-of-mass and relative
Hamiltonians as

HR =
1

2M
(~P + Q~A(~R))2 +

1
2
Mω2

0R
2 (2)

Hr =
1

2µ
(~p+ q ~A(~r))2 +

1
2
µω2

0r
2 +

e2

4πε0Kr
(3)

Hspin = g∗µBB
∑
i

Si,z,

where M = 2m∗, µ = m∗

2 , q = e
2 and Q = 2e · µs and Si,z are the Bohr magneton

and the z-component for each electron. In writing Eqs. 2 and 3 the symmetric gauge
~A = 1

2( ~B × ~r) is used and the vector potential is assumed to be linear function.
Equation 3 represents the Hamiltonian of the harmonic oscillator with well-known

eigenvalues,

ER = h̄(2ncm + |mcm|+ 1)ω + mcm
h̄ωc
2
, (4)
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where ωc = eB
m∗

is the cyclotron frequency and ω =
(
ω2

0 +
(
ωc
2

)2) 1
2

is the effective fre-
quency. ncm = 0, 1, 2, . . . is the radial and mcm = 0± 1± 2, . . . is the azimuthal quantum
numbers which label CM-spectra.

The corresponding eigenstates are

ξ(~R) =

√
ncm!

π(ncm + |mCM !)
ω

(|mcm |+1)
2

R R|mcm|e−ωRR
2/2eimcmφL|mcm|ncm (ωRR2), (5)

where ωR = mcm
h̄ ω and L|mcm|ncm (ωRR2) are the associated Laguerre polynomials. Thus the

problems is reduced to obtaining eigenenergies Enr,m of the relative motion Hamiltonian.
Antisymmetric of the two electron wavefunction requires that even m are singlets and
odd m are triplets with the Zeeman energy term Espin = g∗µBBSz and the total spin
Sz = [1−(−1)m]

2
represents a good quantum number for the system. The total energy of

the Hamiltonian, E = ER (ncm, mcm) + Er(nr, m) + Espin(Sz), are labeled by the CM
and relative quantum numbers |ncmmcm;nrm〉. The coexistence of the electron-electron
and the oscillator potential terms makes the exact analytic solution not possible and one
has to resort to approximate methods.

3. High- and Low-Field Limits

In the limit of high ωr = µ
h̄ω the electron-electron interaction Hamiltonian

H1 =
e2

4πKε0r
(6)

can be considered small compared to the magneto-confinement Hamiltonian. The Hamil-
tonian of the non-interacting system has the form

H0 =
1

2µ
(~p+ q ~A(~r))2 +

1
2
µω2

0r
2. (7)

H0 again is the Hamiltonian for the Harmonic oscillator. For the states (nr = 0, m ≤
0) the eigenenergies have the form

E0 = h̄(|m|+ 1)ω +m
h̄ωc
2

(8)

and the corresponding eigenstates are

Φ(r) =
1√
π|m|!

ω
(|m|+1)

2
r eimcmφe

−ω2
rr

2

2 . (9)

The perturbation theory is reliable. The first order energy correction E1 to the states
(nr = 0, m ≤ 0) can be calculated using the wavefunctions given by Eq. (9). The
eigenenergies corresponding to H1 read as

E1 =
e2

4πKε0

Γ(|m|+ 1
2
)

|m|!
√
ωr, (10)
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and thus the energy spectra of the relative part Hamiltonian reads as

Er = h̄(|m|+ 1)ω +m
h̄ωc

2
+

e2

4πKε0

Γ(|m|+ 1
2
)

|m|!
√
ωr. (11)

The relative Hamiltonian, Eq. (3), can be written as{
−1

2
∂

∂r

(
r
∂

∂r

)
− 1
r2

∂2

∂φ2
+ ω2

rr
2 +

µωc
4ih̄

∂

∂φ
+

µe2

2πh̄2Kε0r

}
Φ(r) =

2µEr
h̄2 Φ(r) (12)

where ωr = µ
h̄
ω.

The first term in Eq. (12) can be expressed as

1
r

∂

∂r

(
r
∂Φ(r)
∂r

)
= r−

1
2
∂2

∂r2

(
r

1
2 Φ(r)

)
+

Φ(r)
4r2

(13)

and Eq. (12) takes the form

{
−r− 1

2
∂2

∂r2

(
r

1
2

)
− 1

4r2
− 1
r2

∂2

∂φ2
+ ω2

rr
2 +

µωc
4ih̄

∂

∂φ
+

µe2

2πh̄2Kε0r

}
Φ(r) =

2µEr
h̄2 Φ(r).

(14)
Eq. (14) is separable in the coordinates r and φ and upon substituting the ansatz

Φ(r) =
eimφu(r)√

2πr 1
2
, (15)

Eq. (14) reads as{
−1

2
d2

dr2
+

1
2

(
m2 − 1

4

)
1
r2

+
1
2
ω2
rr

2 +
α

2r

}
u(r) = E′r u(r), (16)

where
E′r =

µEr

h̄2 −
µmωc

2h̄
(17)

and

α =
µe2

2πh̄2Kε0
. (18)

We can write Eq. (16) as follows:{
−1

2
d2

dr2
+ Veff (r)

}
u(r) = E′ru(r), (19)

where

Veff (r) =
1
2
ω2
rr

2 +
1
2

(
m2 − 1

4

)
1
r2

+
α

2r
. (20)
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For small ωr. Eq. (19) can be solved approximately by expanding the Veff (r) around
its local minimum [15]. The eigenenergies are calculated to be

Er = h̄ω0

{
0.945

(
h̄α2

µω0

) 1
3

ω
2/3
eff + 0.794

(
m2 − 1

4

)(µω0

h̄α2

)1/3

ω
4/3
eff

+0.866ωeff + 0.364
(
m2 − 1

4

)(µω0

h̄α2

)2/3

ω
5/3
eff +

mωc
2ω0

}
(21)

where

ωeff =

[
1 +

(
ωc
2ω0

)2
]1/2

. (22)

4. Interpolation

The energy spectrum of the relative Hamiltonian is calculated only in the high- and
low-field limits. To obtain the spectra of the interacting system in a magnetic field of
arbitrary strength, we interpolate between both field limits by proposing the following
formula:

Er =
E`G+EsG

−1

G+G−1
, (23)

where
G =

(|m|+ 1)ωeff
2

(24)

and E` and Es are the eigenenergies in strong-field Eq. (11) and the low-field limits of
Eq. (21), respectively.

We would like to mention that our proposed interpolation formula Eq. (23) is an
improved version of the one which has been suggested recently by Taut [15]. The only
difference, yet very important, between our formula and Taut’s is in the form of G-
function. Taut considered G as a function of the effective frequency ωeff , while ours is a
function of the azimuthal quantum number m in addition to ωeff . We find that including
the m-dependence significantly improves the eigenenergies. We will use this proposed
interpolation formula to study the properties of the interacting electrons confined in the
parabolic quantum dot. The accuracy of the quantum dot spectra produced by Eq. (23)
will be tested against the exact results.

5. Results and Conclusions

Our numerical results are presented for QD made of GaAs. The material parameters
are: electron effective mass m∗ = 0.067me and dielectric constant K = 12.5. With
these parameters the effective Bohr radius a∗ = 98.7A0 and effective Rydberg R∗ =
5.83meV . We have used the interpolation formula Eq. (23) to produce the eigenenergy
states |00; 0m>,m = 0,−1,−2, . . . for interacting electrons parabolically confined in the
quantum dot of size `0 = 3a∗. The results are listed in Table 1 and also displayed in Fig.
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1 (a). It is clear that the spectra of the interacting system exhibits energy level crossings.
As the magnetic field strength increases the energy of the state m = 0 increases while the
states with non-vanishing azimuthal quantum number m decrease leading to a sequence of
different ground states. The first transition in the orbital momentum of the ground state,
m : 0 → −1, occurs at ωc/ω0 ≈ 0.6. This is consistent with the exact results of Wagner
et.al. [7] as shown in Figure 1 (b). In Table 2 we have calculated the energies taking
into account the spin effect, g∗ = −0.44. The Zeeman energy lowers the total energies
of the states |00 : 0m > with odd m-values while leaving the even-m states unchanged.
Additional energy µ(N) is the energy required to add one more electron to the quantum
dot, raising it from an (N−1)-electron ground state to an N -electron ground state. That
is, we define µ(N) = EN − EN−1, where EN is the ground state energy of N -electron
system [9, 19]. The addition spectrum of a QD in a magnetic field using capacitance
spectroscopy technique is measured by Ashoori et.al. [6].
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Figure 1. The eigenenergies of the states |00; 0m >, for interacting electrons parabolically con-

fined in the quantum dot of size `0 = 3a∗ and g∗ = 0.0. a) Present work (m = 0,−1,−2, . . . ,−9)

and b) Wagner’s et.al., Ref. (7), (m = 0,−1,−2, . . . ,−10)

The cusps, which appeared, in the addition spectrum of the QD is due to the transitions
in the spin and to the transitions in the relative motion for the quantum dot [18]. More
discussion and experimental results can be found in a very recent review article by Ashoor
and references there in [7]. Table 3 shows the spectra of the quantum dot using Taut’s
interpolation and for g∗ = 0.0.

To test the accuracy of our interpolation scheme, we have compared our results with
exact ones [11, 30]. In addition to the obvious agreement between our results, displayed
in Fig. (1a) and Wagner’s et.al., shown in Fig. (1b), we have listed in Table 4 the energies
for m = 0,−1,−4 and -9 using different works. For state m = 0, Taut’s interpolation
gives results which are in exact agreement with ours. This results is expected, since for
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m = 0 case, the G-function Eq. (24) and the interpolation formula Eq. (23) reduce
to Taut’s interpolation. However, as m increases i.e., m = −9, Taut’s result deviate
significantly from the numerical ones while our interpolation formula gives good results.
This accuracy can be clearly seen from Table 4. For example, the energies of the state
|00; 0−9 >, calculated at ωc/ω0 = 5, are 1.83, 1.95 and 9.18 produced by numerical work,
Eq. (23) and Taut’s formula, respectively.

Table 1. The eigenenergies (in units of R∗) for the states |00; 0m >,m = 0,−1, . . . ,−10, for two

interacting electrons confined parabolically in the QD with size `0 = 3a∗ and effective Lande’

factor g∗ = 0. The eigenenergies are obtained by using the interpolation formula, Eq. (23)

ωc/ω0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0 1.01 1.04 1.11 1.23 1.37 1.53 1.70 1.87 2.05 2.22 2.40
-1 1.05 1.02 1.05 1.11 1.19 1.30 1.41 1.53 1.66 1.79 1.91
-2 1.22 1.14 1.12 1.15 1.21 1.29 1.38 1.48 1.59 1.70 1.82
-3 1.43 1.30 1.24 1.24 1.27 1.33 1.41 1.50 1.59 1.70 1.80
-4 1.65 1.47 1.37 1.34 1.35 1.39 1.45 1.53 1.52 1.71 1.81
-5 1.88 1.65 1.51 1.45 1.44 1.46 1.51 1.57 1.65 1.74 1.83
-6 2.10 1.83 1.65 1.56 1.53 1.53 1.57 1.62 1.69 1.77 1.85
-7 2.33 2.00 1.79 1.67 1.62 1.61 1.63 1.67 1.73 1.80 1.88
-8 2.56 2.18 1.93 1.78 1.71 1.68 1.70 1.72 1.78 1.84 1.92
-9 2.78 2.36 2.07 1.89 1.80 1.76 1.75 1.78 1.82 1.88 1.95
-10 3.01 2.53 2.21 2.00 1.89 1.83 1.82 1.83 1.87 1.92 1.98

Table 2. The eigenenergies (in units of R∗) for the states |00; 0m >,m = 0,−1, . . . ,−10, for two

interacting electrons confined parabolically in the QD with size `0 = 3a∗ and effective Lande’

factor g∗ = −0.44. The eigenenergies are obtained by using the interpolation formula, Eq. (23)

ωc/ω0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0 1.01 1.04 1.11 1.23 1.37 1.53 1.70 1.87 2.05 2.22 2.40
-1 1.05 1.02 1.04 1.10 1.19 1.29 1.40 1.52 1.64 1.77 1.90
-2 1.22 1.14 1.12 1.15 1.21 1.29 1.38 1.48 1.59 1.70 1.82
-3 1.43 1.30 1.24 1.23 1.26 1.32 1.40 1.48 1.58 1.68 1.79
-4 1.65 1.47 1.37 1.34 1.35 1.39 1.45 1.53 1.62 1.71 1.81
-5 1.88 1.65 1.51 1.44 1.43 1.45 1.50 1.56 1.64 1.72 1.81
-6 2.10 1.83 1.65 1.56 1.53 1.53 1.57 1.62 1.69 1.77 1.85
-7 2.33 2.00 1.79 1.67 1.61 1.60 1.62 1.66 1.72 1.79 1.87
-8 2.56 2.18 1.93 1.78 1.71 1.68 1.69 1.72 1.78 1.84 1.92
-9 2.78 2.35 2.07 1.89 1.79 1.75 1.74 1.77 1.81 1.86 1.93
-10 3.01 2.53 2.21 2.00 1.89 1.83 1.82 1.83 1.87 1.92 1.98

In conclusion, we have proposed a formula to interpolate between the energies of
the quantum dot in high- and low-field limits. The formula is implemented to obtain
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the energy spectra of the quantum dot and show the transitions in the orbital angular
momenta of the ground state as a function of a magnetic field of arbitrary strength. Our
interpolation gives good results compared to the exact numerical works.

Table 3. The eigenenergies (in units of R∗) for the states |00; 0m >,m = 0,−1, . . . ,−10, for

two interacting confined parabolically in the QD with size `0 = 3a∗ and for g∗ = 0.0. The

eigenenergies are obtained by using Taut’s formula [12]

ωc/ω0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0 1.01 1.04 1.11 1.23 1.37 1.53 1.70 1.87 2.05 2.22 2.40
-1 1.03 1.01 1.03 1.09 1.17 1.28 1.39 1.51 1.64 1.77 1.90
-2 1.25 1.17 1.16 1.20 1.27 1.36 1.47 1.59 1.71 1.83 1.95
-3 1.60 1.48 1.45 1.48 1.56 1.66 1.78 1.90 2.03 2.168 2.29
-4 2.08 1.92 1.88 1.92 2.02 2.15 2.30 2.44 2.56 2.73 2.86
-5 2.69 2.49 2.45 2.52 2.66 2.83 3.02 3.20 3.37 3.53 3.67
-6 3.42 3.20 3.17 3.28 3.47 3.71 3.94 4.16 4.37 4.55 4.71
-7 4.29 4.03 4.03 4.19 4.46 4.76 5.06 5.34 5.58 5.79 5.97
-8 5.28 5.00 5.02 5.26 5.61 6.01 6.38 6.73 7.02 7.26 7.46
-9 6.39 6.10 6.16 6.49 6.94 7.43 7.90 8.32 8.67 8.95 9.18
-10 7.64 7.33 7.45 7.87 8.44 9.05 9.62 10.1 10.5 10.8 11.1

2 4 7 2

Table 4. The eigenenergies (in units of R∗) for two interacting electrons confined in the quantum

dot of size `0 = 3a∗ and for g∗ = 0.0

m 0 -1 -4 -9
ωc/ω0 a b c a b c a b c a b c
0.5 0.97 1.04 1.04 1.01 1.02 1.01 1.38 1.47 1.92 2.17 2.36 6.10
1.0 1.04 1.11 1.11 1.00 1.05 1.03 1.28 1.37 1.88 1.90 2.07 6.16
2.0 1.26 1.37 1.37 1.16 1.19 1.17 1.26 1.35 2.02 1.64 1.80 6.94
4 1.83 1.70 1.70 1.61 1.53 1.64 1.54 1.62 2.56 1.69 1.82 8.67
5 2.13 2.40 2.40 1.87 1.91 1.90 1.73 1.81 1.86 1.83 1.95 9.18

a ≡ Numerical Results, Ref. [24]
b ≡ Present Interpolation
c ≡ Taut’s Interpolation
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