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Abstract 

 
In this paper, a periodic One-Component Plasma (OCP) system of N-point particles is simulated by Monte Carlo 

(MC) technique in three dimensions. Because of the long range nature of the Coulomb potential, no cut-off distance 

is considered in calculations (i.e, for each particle i, the effect of the other N-1 particles on i, is taken into account). 

The maximum allowed displacement "dmax" used in MC simulation controls the convergence to the equilibrium 

state of the system. An optimum maximum allowed displacement, O-dmax, is found and is given by a function of the 

temperature and the density of the system. Obtaining this function is done statistically by fitting the calculated data 

resulted from simulating the system at different values of temperature and density. The obtained O-dmax gives fast 

convergence of the simulation. 

Keywords: One component plasma, optimum, allowed displacement, Monte Carlo. 
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Introduction 

 
The OCP is a system of N-identical charged particles interacting through Coulomb potential and 

embedded in a uniform compensating background of opposite charge. The OCP in one, two, and 

three dimensions explores the features and properties of many phenomena in the fields of 

electrodynamics, statistical mechanics, and thermo-dynamics. Hence, it has been under focus by 

many researchers in the last six decades (Levesque D. W. J., 1983), (Deutsch C., 1974), (B. J. , 

1981), (Alstuey A, Surface properties of the three-dimensional one-component plasma, 1981), 

(L., 2004), (Zambrodin A., 2006). The bulk and surface properties of the three dimensional OCP 

were studied using MC simulation (Levesque D. W. J., 1983). The structure of strongly coupled 

uniform OCP in two and three dimensions is calculated by the "Onsager Molecule" approach  

(Rosenfield Y., 1989). Simple analytical approximations for the internal energy of the strongly 

coupled OCP in two and three dimensions are studied in (Kharpak Sergy A., 2014). The fermion 

MC variational calculations were performed to determine the equation of state of the uniform 

OCP in two and three dimensions (D, 1972). The magnetic properties of the OCP in two and 

three dimensions were studied in  (Alstuey A, Magnetic properties of a nearly classical one 

component plasma in three or two dimensions, 1980).The general variational formulation for the 

application of Mean Spherical Approximation for soft potentials, and the results of the OCP were 

discussed and extended in  (Y., 1984). The equilibrium properties of the classical OCP in a 

uniform background of opposite charge were computed for systems of various sizes using MC 

method  (J., 1973). At one special temperature, the equilibrium statistical mechanics of the 

classical two dimensional OCP were worked out exactly in  (B. J. , 1984). MC computations of 

the surface energy of the classical OCP have been made for different values of the plasma 

parameter Gamma (Badiali J. P., 1983). The MC simulation was used to study the lattice 

dynamics in the harmonic approximation and the solution of the hyper-netted-chain equation in 

the classical two dimensional OCP (Gann R. C.Chakravarty, 1979). Results from MC study of 

the classical two dimensional OCP were obtained in (Brush1 V. M., 1966), (Caillo1 J. M., 1982). 

The fluctuations in the net electric charge in a two dimensional OCP with uniform background 

charge density were studied using computational simulations (Levesque D. W. J., 2014). The two 

dimensional OCP Yukawa systems in a perpendicular magnetic field was studied using 

computational technique to explore the equilibrium particle dynamics in the fluid state  (Ott T., 
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2014). Many other references can be found in the literature that study different systems of OCP. 

In this research, the OCP in three dimensions is studied using Metropolis MC, (MMC) method. 

The aim of the research is to obtain an explicit formula that gives the O-dmax as a function of 

temperature and density. The same methodology has been used for Lennard Jones (Al-Shraydeh, 

2015). Obtaining such a displacement and using it in simulation will decrease the computational 

work needed to reach the equilibrium state of the system. In the next section, we will present the 

MMC simulation method. The effect of the choice of dmax on calculations will be discussed in 

section 3. Numerical results will be presented in section 4, and a fitting of the data will be done in 

order to obtain the O-dmax for any choice of temperature and density. Discussion, conclusions, 

and future perspectives will be made in the last section. 

 

 

Monte Carlo Simulation  

 

Monte Carlo (MC) is considered to be the most important simulation techniques that are usually 

used for solving problems in statistical physics. In MC method, the basic idea is to evaluate 

thermal averages of materials by statistically sampling a desired region of the phase space of a 

model using computers (Newman M. E. J., 1999). The quick development of computational 

resources, and the expansion of new algorithms allow MC simulations to be a base for studying 

lots of subjects of statistical physics (M., 1992). The results obtained in this work are based on 

MC simulations. Hence, a brief look at the general idea behind equilibrium thermal MC 

techniques is done in this section. In any N-particle system with constant volume V, constant 

temperature T, and constant number of particles N (NVT ensemble), the average value <A> of 

any observable A of the system can be approximated by (Landua D. P., 2000). 

 

                                                                               
 

 
   

   (ti),                                                                               (1) 

 
Where M is the number of the sampled points from the distribution P(t), and ti denotes the 

configuration i of the system. The distribution P(t) is  

 

                                                                              
       

          
                                                                                 (2) 
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where β = 1/(KBT ), KB is the Boltzmann constant and U is the potential total. Practically, it is 

possible to construct a Markov chain of configurations t1, t2... tn that approaches the desired 

distribution P (t). This construction can be done using a technique developed by Metropolis and 

co-workers in 1953 and the Metropolis Monte Carlo (MMC) (Metropolis N., 2008). This 

technique depends on the fact that the probability of transferring the system from state ti to state tj 

is  (David M. Ferguson, 1999),  (AR, 2004) 

                                                                                         ,                                                                  (3) 

 
Where  U = U(tj)-U(ti). 

Metropolis et.al., suggested the following steps in order to determine whether the change of the 

state of the periodic N-particle system will be accepted or rejected. 

1. Choosing randomly the initial state, ti, of the system.  

2. Enumerating the particles from 1 to N. Let k =1.  

3. While k <N, doing steps 5-12.  

4. Calculating the total potential energy Ui.  

5. Generating a new state, tj, by changing the position of particle k.  

6. Calculating the new total potential energy Uj.  

7. Computing the difference in the energy ∆U = Uj-Ui. 

9. Calculating the transition probability Pr according to equation  (3).  

10. Generating a uniform distribution random number, ξ , in the interval [0; 1].  

11. If Pr (ti  → tj) is greater than ξ , accept the move, let j = i and k = k + 1, otherwise, reject the 

move and let k = k + 1. Go to step 5.  

12. Repeating steps (3- 12) Ns times, where Ns denotes the number of MC sweeps.  

 
Increasing the number of MC sweeps, Ns will increase the accuracy of calculating the desired 

properties of the system. Each move of any particle at each MC sweep must obey the periodicity 

of the system; the reason is that the physical system under consideration is infinite. Number of 

particles in the center box is N (Figure 1). All other boxes are copies of the central one. When a 

particle moves outside this box, an alternative particle enters it from the opposite side. Moving 

the particles, the researcher must do the simulation according to a criterion that does not allow the 

particle's displacement to exceed a limited value. This criterion is discussed in the next section. 

 



 
Iyad S., Hayel A., Anan H., Ruba A. 

 
The Optimum Maximum Allowed… 

   

28 Journal of the Arab American University. Volume (2). Number (2)/ 2016 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: The periodicity of the N-particle system. 

 

 

Maximum Allowed Displacement  

 

The random movements in step 5 of the MMC algorithm determines the acceleration of 

convergence to the equilibrium state of the system. The random displacement of any particle is 

given by 

                                                                                                                                                                       (4) 

  

where dmax is the maximum allowed displacement of the particle along the coordinate axes,    =(1, 

1, 1), and    is a vector whose components are random numbers distributeduniformly on the 

interval [0, 1]. The acceptance rate (the ratio between the numbers of the accepted moves to all 

number of moves (N*Ns)) depends on dmax. If      
old 

is the position of the particle before movement, 

then, the new position, taking into account the periodicity, is given by 

                                                                                      
new

=      
old

 +                                                                                  (5) 

 

If the particle's movements are too small, neighboring configurations will be highly correlated 

and any essential change of the configuration will need many particle displacements. If dmax is too 

large, most moves will be rejected, which will also lead to the increase of the computational 

work. In our research we will determine the best dmax at any given temperature and density. The 

criteria that will be used are the speed of convergence to the equilibrium state. In many systems 

other than OCP, it was found that the dmax corresponds to acceptance rate of 50%, which is 

common, although there is no motivation that this value is optimal. 
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Numerical Results  

 

A periodic OCP system of fixed N particles, fixed temperature T, and fixed volume V is 

simulated in three dimensions using MMC technique (NVT-MC). The number of particles used 

in calculations is 125 particles, which is traditionally sufficient to get the desired results. The 

number of MC sweeps used is Ns=10000 which is statistically enough. Because of the long range 

nature of the system, a large dimensionless scale cube box of five length edge is used, and no cut-

off distance is considered in calculations.  

The potential function of the OCP system is the Coulomb one, which is given by 

                                                                                      
 

    

    

   
                                                                            (6) 

Where rij is the distance between the two particles i and j, (in our system, qi = qj for alli and j), 

the constant    is the electrical permittivity of space. The reduced form of the Coulomb potential 

which is considered in our calculations is 

 

                                                                                    
     

 

  
  
                                                                                (7) 

Where Where 

                                                                                     
  = 

    

    
                                                                                  (8) 

The temperature T is also given in reduced form  

 

                                                                                                                                                                             (9) 

While the density is  

                                                                                      
 

 
                                                                                       (10) 

 

The NVT-MC code was written in C
++

 language using C
++

 builder 6 and tested on Windows 

2007, 32 bit. Once the simulation runs stable measurements of respective energy is performed. 

The output data files were saved in Microsoft Excel format and the output figures were saved as 

output Matlab figures. The reason for installing C
++

 builder 6 instead of the other builders is that, 

it could be linked directly with Matlab 2008, and Microsoft Office Excels 2010. In NVT-MC 

code, the right balance between readability, taking advantage of C
++

 features, and performance 

have been considered in this work. The Coulomb potential energy behavior of the point particles, 



 
Iyad S., Hayel A., Anan H., Ruba A. 

 
The Optimum Maximum Allowed… 

   

30 Journal of the Arab American University. Volume (2). Number (2)/ 2016 
 

which simulated in 3D lattice, is studied to obtain the O-dmax that leads to get fast equilibration 

optimally with minimum number of MC sweeps. During the simulation, the calculations of the 

Coulomb potential followed the expected physical behavior, and the periodic boundary 

conditions worked correctly. The simulation was done using different values of temperature T 

and density in the ranges [0.5, 3], and [0.25, 2] respectively. The convergence of the Coulomb 

potential as a function of MC sweeps is tested. The values of dmax associated with faster 

convergence, O-dmax, are listed in tables  1, 2, 3, 4, 5, and  6. 

 

Table 1: The values of O-dmax at    =1.0 

             O-dmax 
0.2500 0.039117567 

0.3125 0.032716157 

0.3750 0.028504404 

0.4375 0.025380106 

0.5000 0.023230942 

0.6250 0.020190683 

0.7500 0.017987165 

1.0000 0.015327276 

1.2500 0.013626067 

1.5000 0.012557762 

1.7500 0.010328764 

2.0000 0.009598112 

 

 

Table 2: The values of O-dmax at    =1.0 

 

             O-dmax 
0.2500 0.211217788 

0.3125 0. 173166707 

0.3750 0. 146356671 

0.4375 0. 128675012 

0.5000 0. 114926428 

0.6250 0. 096981353 

0.7500 0. 085340521 

1.0000 0. 069153823 

1.2500 0. 057870671 

1.5000 0. 048931762 

1.7500 0. 042939171 

2.0000 0. 038454244 
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Table 3: The values of O-dmax at    =1.5 

 

             O-dmax 
0.2500 0. 928200925 

0.3125 0. 724771376 

0.3750 0. 587099005 

0.4375 0. 496245599 

0.5000 0. 415476390 

0.6250 0. 313707649 

0.7500 0. 252662978 

1.0000 0. 209657745 

1.2500 0. 164118476 

1.5000 0. 136255572 

1.7500 0. 116671792 

2.0000 0. 102599723 

 

 

Table 4: The values of O-dmax at    =2.0 

 
             O-dmax 

0.2500 2.453771943 

0.3125 1.897912977 

0.3750 1.551728904 

0.4375 1.290991592 

0.5000 1.237715042 

0.6250 0.878966628 

0.7500 0.712006513 

1.0000 0.515461608 

1.2500 0.387777545 

1.5000 0.317012074 

1.7500 0.256496178 

2.0000 0.219619119 

 
  
 

 

Table 5: The values of O-dmax at    =2.5 

 
             O-dmax 

0.2500 1.934964176 

0.3125 1.797793148 

0.3750 1.686102781 

0.4375 1.632385194 

0.5000 1.574118315 

0.6250 1.506529980 

0.7500 1.461528562 

1.0000 1.282053425 

1.2500 1. 200022068 

1.5000 1.121495183 

1.7500 1.077586427 

2.0000 0.500460792 
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Table 6: The values of O-dmax at    =3.0 

 

             O-dmax 
0.2500 2.327120570 

0.3125 2.150301425 

0.3750 2.021993410 

0.4375 1.899782981 

0.5000 1.823846144 

0.6250 1.728136450 

0.7500 1.607847958 

1.0000 1.486817400 

1.2500 1.424641803 

1.5000 1.333967768 

1.7500 1.079311682 

2.0000 0.924562430 

 

 

Figure 2 shows an example of the Coulomb potential versus MC sweeps at different values of 

dmax at specific temperature and density and the acceptance rate associated with the O-dmax which 

is about 50%. This fact is true for all values of T; Figure 3 shows the fitted curve of the O-dmax as 

a function of density for specific temperature; it decreases by increasing the density; figure  4 

shows that the behavior of O-dmax as a function of density at different values of temperature; 

Figure  5 shows the best fitting curve of the O-dmax as a function of temperature at specific 

density; Figure  6 shows the simulating results of O-dmax as a function of temperature at different 

values of density.  Clearly, the O-dmax increases by increasing the temperature of large densities. 

For small densities, results show the same conclusion for temperature less than two; Figure 7 is a 

3-dimensional fitted curve that gives the O-dmax as a function of temperature and density. The data 

is taken from Tables  1, 2, 3, 4, 5, and  6. Fitting the data is done by Matlab and gives the 

following explicit mathematical formula: 

F (     ) = 0.5733 - 0.6203*  - 1.57*   + 1.226*  2
- 1.211*  *   + 2.051*    – 0.2482     + 0.2031*   *  + 

0.08202*  *    – 0.5642*   ,                                                                                      (11)  

where F(  ,   ) represents the O-dmax at any T and . The correlation coefficient for Formula  

11 is 0.95. 
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Figure 2: The Coulomb potential versus MC sweeps at    =0.5. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3: The O-dmax versus     at        
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Figure 4: The O-dmax versus   at different values of   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 5: The O-dmax versus   at     = 2. 
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                       Figure 6: The O-dmax versus    at different values of    . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7: The best fitted surface that represents the O-dmax 
as a function of temperature and density. 
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Conclusions and Future Work  

The OCP is considered as one of the most important systems that occur in many phenomena in 

science. The metropolis MC simulation method has been used very often in the last six decades 

in order to understand the properties of those systems. The speed of convergence of the 

simulation to the equilibrium state of the system is affected by many parameters like number of 

particles, density, temperature, and maximum allowed displacement dmax. In this research, an 

optimum dmax is obtained as a function of temperature and density for fixed number of particles. 

The formula obtained is given by 11 with correlation coefficient 0.95. In any OCP systems, an 

MC simulation can be done efficiently by using the O-dmax obtained in this research. As a future 

work, we are planning to add kinetic energy calculations and take in our consideration the radius 

of atom to apply the simulation at real systems. Moreover, we will incorporate the dipole-dipole 

interactions in the OCP system, and the optimum maximum allowed displacement of the angle 

and check out the relation between the best angle and the best displacement. The two Component 

Plasma will also be under focus in a future work. 
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 مونتي كارلو لنظام البلازما ذات المكون الوحيدأفضل ازاحة قصوى ممكنة في محاكاة 
 

 هايل الشريده، وعنان حسين، وربا الصالحو اياد صوان، 

 جنين-الجامعة العربية الأمريكية ،العلومكلية   
iyad.suwan@aauj.edu1 

 

  ملخصال

 ؛ي كارلوباستخدام تقنية مونت ، وذلك ثلاثي الأبعادفي الفضاء  البلازما ذات المكون الوحيدمتعدد من جزيئات مكرر محاكاة نظام ينهض هذا البحث ب

 ،(خرالآعلى  تأثير كل جزيءخذ بعين ااععتبار تم الأ)لم يتم اعتبار جهد القطع في الحسابات وفي هذا البحث  ،بعيد التأثيربسبب طبيعة جهد كولوم 

، قة الجهد المتعادلالى منطلتقاء جزيئات النظام ابسرعة  لنظام باستخدام مونتي كارلوااعزاحة القصوى الممكنة للجزيء والمستخدمة في محاكاة اتتحكم 

 مةبملاءقتران الرياضي الحصول على الأثم  .للنظامبدرجة الحرارة والكثافة  وتم ايجاد اقتران رياضي مرتبط حسبتازاحة قصوى ممكنة  افضل إن 

 .لمحاكاةلسريع تقارب تعطي التي   احة قصوى أفضل إز  اعيجاد ؛البيانات المحسوبة من محاكاة النظام عند درجات حرارة وكثافة مختلفة

 .محاكاة مونتي كارلو جزيئات البلازما ذات المكون الوحيد، أفضل إزاحة قصوى، :الكلمات الدالة

 


