Authors
Abu- Hamad S.
Zaid H.
Israelson A.
Nahon E.
ShoshanBarmatz V.
Pages From
13482
Pages To
13490
Journal Name
Journal of Biological Chemistry
Volume
283
Issue
19
Abstract

In brain and tumor cells, the hexokinase isoforms HK-I and HK-II bind to the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane. We have previously shown that HK-I decreases murine VDAC1 (mVDAC1) channel conductance, inhibits cytochrome c release, and protects against apoptotic cell death. Now, we define mVDAC1 residues, found in two cytoplasmic domains, involved in the interaction with HK-I. Protection against cell death by HK-I, as induced by overexpression of native or mutated mVDAC1, served to identify the mVDAC1 amino acids required for interaction with HK-I. HK-I binding to mVDAC1 either in isolated mitochondria or reconstituted in a bilayer was inhibited upon mutation of specific VDAC1 residues. HK-I anti-apoptotic activity was also diminished upon mutation of these amino acids. HK-I-mediated inhibition of cytochrome c release induced by staurosporine was also diminished in cells expressing VDAC1 mutants. Our results thus offer new insights into the mechanism by which HK-I promotes tumor cell survival via inhibition of cytochrome c release through HK-I binding to VDAC1. These results, moreover, point to VDAC1 as a key player in mitochondrially mediated apoptosis and implicate an HK-I-VDAC1 interaction in the regulation of apoptosis. Finally, these findings suggest that interference with the binding of HK-I to mitochondria by VDAC1-derived peptides may offer a novel strategy by which to potentiate the efficacy of conventional chemotherapeutic agents.