fbpx Absorption and optical conduction in InSe/ZnSe/InSe thin film transistors |ARAB AMERICAN UNIVERSITY
Contact information for Technical Support and Student Assistance ... Click here

Absorption and optical conduction in InSe/ZnSe/InSe thin film transistors

Authors: 
Al Garni, S. E.
(Qasrawi, A. F.
Journal Name: 
FUNCTIONAL MATERIALS LETTERS
Volume: 
9
Issue: 
2
Pages From: 
1650019
To: 
1650019
Date: 
Friday, April 1, 2016
Keywords: 
Heterojunction; thin film transistor; optical spectra; optical conductivity
Abstract: 
In this work, (n)InSe/(p)ZnSe and (n)InSe/(p)ZnSe/(n)InSe heterojunction thin film transistor (TFT) devices are produced by the thermal evaporation technique. They are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy and optical spectroscopy techniques. While the InSe films are found to be amorphous, the ZnSe and InSe/ZnSe films exhibited polycrystalline nature of crystallization. The optical analysis has shown that these devices exhibit a conduction band offsets of 0.47 and valence band offsets of 0.67 and 0.74 eV, respectively. In addition, while the dielectric spectra of the InSe and ZnSe displayed resonance peaks at 416 and 528 THz, the dielectric spectra of InSe/ZnSe and InSe/ZnSe/InSe layers indicated two additional peaks at 305 and 350 THz, respectively. On the other hand, the optical conductivity analysis and modeling in the light of free carrier absorption theory reflected low values of drift mobilities associated with incident alternating electric fields at terahertz frequencies. The drift mobility of the charge carrier particles at femtoseconds scattering times increased as a result of the ZnSe sandwiching between two InSe layers. The valence band offsets, the dielectric resonance at 305 and 350 THz and the optical conductivity values nominate TFT devices for use in optoelectronics.