fbpx In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties |ARAB AMERICAN UNIVERSITY
Contact information for Technical Support and Student Assistance ... Click here

In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties

Authors: 
Soumaya Touzani S., Hashem W., Imtara H., Kmail A., Kadan S., Zaid H., ElArabi I., Lyoussi B.and Saad B
ISSN: 
2314-6141
Journal Name: 
BioMed Research International
Volume: 
4836378
Issue: 
1
Pages From: 
1
To: 
11
Date: 
Thursday, December 12, 2019
Abstract: 
Propolis is a resin that honeybees produce by mixing saliva and beeswax with exudate gathered from botanical sources. The present in vitro study investigated the potential use of propolis as a multitarget therapeutic product and the physicochemical properties, chemical composition, and immunomodulatory, antioxidant, antibacterial, and anticancer properties of a propolis extract from the northern Morocco region (PNM). Pinocembrin, chrysin, and quercetin were the main phenolic compounds of PNM as measured in HPLC. The PNM showed significant inhibitory effects against all tested Gram-positive and Gram-negative strains and showed high antioxidant activities by scavenging free radicals with IC50 (DPPH = 0.02, ABTS = 0.04, and FRAP = 0.04 mg/ml). In addition, PNM induced a dose-dependent cytostatic effect in MCF-7, HCT, and THP-1 cell lines at noncytotoxic concentrations with IC50 values of 479.22, 108.88, and 50.54 μg/ml, respectively. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) was decreased in a dose-dependent manner in LPS-stimulated human peripheral blood mononuclear cells (PBMNCs), whereas the production of the anti-inflammatory interleukin-10 (IL-10) was increased in a dose-dependent manner reaching 15-fold compared to the levels measured in untreated PBMNCs. Overall, the results showed that the traditionally known multitarget therapeutic properties of the PNM seem to be mediated, at least in part, through cytostatic, antibacterial, and immunomodulatory effects.